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RESUMO

Este trabalho versa sobre o desenvolvimento uma metodologia de simulagfo
numérica computacional que permita analisar a influéncia do suporte do modelo na
determinagdio dos coeficientes aerodinimicos em ensaios de time! de vento.
Primeiramente constam no texto estudos tedricos sobre geragio automatica de
malhas ndo estruturadas, topicos de aerodinidmica relevantes, modelo de escoamento
inviscido (equagbes de Euler) ¢ método dos volumes finitos. Em seguida estio
presentes simulagdes bidimensionais de perfis NACA de quatro digitos, utilizando o
software Fiuent ¢ o gerador de malhas Gambit. As malhas geradas sdo do tipo ndo
estruturada triangular, ¢ o modelo de escoamento utilizado é inviscido. Como
resultados estio apresentadas curvas do coeficiente de sustentagio e momento em
funcdo do angulo de ataque e respectivas comparagdes com dados experimentais
disponiveis na literatura. Em seguida, o texto apresenta resultados de simulacdes
tridimensionais de uma aeronave completa, em condigdo de vdo livre e em ensaio em
tunel de vento sustentada por suportes. Os softwares utilizados sd0 os mesmos e as
malhas sdo do tipo tetraedral. O trabalho apresenta uma analise da influéncia de duas
diferentes configuragSes de suporte no escoamento ao redor da aeronave e na

determinac@o dos coeficientes acrodindmicos.
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1 INTRODUCAO

1.1 Objetivos e motivagado

Este trabalho tem como objetivo final desenvolver uma metodologia de
simulagiio numérica computacional que permita analisar a influéncia do suporte do
modelo na determinacio dos coeficientes aerodindmicos em ensaios de tinel de
vento.

Entretanto, para atingir esse objetivo, entende-se que seja necessario um
maior aprofundamento nos topicos de aerodindmica relacionados, assim como no
aspecto computacional e numérico do trabalho, que envolve a geragdo de malhas e
utilizagio de um método numérico para a resolugio dos problemas. Isto € necessario
porque o desenvolvimento do trabalho envolve alguns conceitos que ndo fazem parte
do conteudo das disciplinas ministradas no curso de Engenharia Mecdnica —
Habilitagdo em Automacfio e Sistemas, oferecido pela Escola Politécnica da
Universidade de S&o Paulo.

Além do mais, optou-se por fazer uma abordagem de refinamento
progressivo, € por isso primeiramente desenvolver-se-do simulagdes de casos
bidimensionais do escoamento ao redor de folios, visando a uma familiarizagio com
os detalhes do processo de simulaggo em CFD, principalmente no que se refere ao
pré-processamento, e com a metodologia de andlise dos resultados. Quanto a esse
Gltimo aspecto, é importante ressaltar também que a literatura disponibiliza um
nimero muito maior de resultados experimentais para casos bidimensionais do que
para casos tridimensionais. Assim, a validacdo das simulagBes ¢ bastante facilitada e
ganha maior credibilidade,

Desse modo, este trabalho ambiciona nfo somente ser um estudo de caso,
mas a desenvolvimento de uma metodologia, ou pelo menos o comeco do
desenvolvimento de uma, que permita a produgfo de simulagdes computacionais
razoavelmente precisas de fendmenos relacionados com aeronaves. A analise da
influéncia do suporte de um modelo na determinagio dos coeficientes aerodindmicos

em ensaios de tinel de vento serve como motivag3o pratica para o desenvolvimento



do trabalho e também para gerar um resultado de aplicagio imediata e real dos

artificios apresentados aqui.

1.2 CFD.

A dindmica dos fluidos computacional (CFD — do inglés Computational
Fluids Dynamics) é normalmente definida como o conjunto de tépicos que englobam
a solugdo numérica, através de métodos computacionais, das equagSes governantes
que descrevem o escoamento de fluidos e transferéncia de calor, ou seja, as equagdes
da dinidmica do movimento (Navier-Stokes ou Euler, por exemplo), equagdes de
continuidade e quaisquer outras equagdes adicionais de conservago, tais como de
energia ou concentracio de espécies quimicas. Juntamente com as abordagens
experimentais e analiticas, constitui o conjunto de técnicas utilizadas para a
resolugdio de problemas em mecénica dos fluidos e transferéncia de calor.

Como uma ciéncia em desenvolvimento, CFD tem recebido uma enorme
atencio da comunidade cientifica e tecnologica internacional desde o advento do
computador digital. No fim dos anos 60, os supercomputadores digitais comegaram a
apresentar taxas de processamento rapidas o bastante para resolver as equagdes de
Navier-Stokes para alguns casos simples, como o escoamento de velocidades baixas,
bidimensional ao redor de um obstaculo. Antes disso, tineis de vento eram
essencialmente a unica maneira de testar a aerodindmica de novos projetos. De 14
para ca, o custo computacional de um procedimento genérico tem se reduzido de um
fator aproximadamente igual a 10 a cada 8 anos. Por isso, nos ultimos anos CFD
deixou de ser apenas um objeto de pesquisa nos meios académicos e se tornou uma
ferramenta bastante poderosa e importante em quase todo tipo de projeto que envolve
mecénica dos fluidos, indo desde engenharia aeroespacial até previsio do tempo.
Contudo, tomando como pardmetro o projeto de aeronaves, por exemplo, até mesmo
hoje as limitacdes dos mais poderosos supercomputadores ainda fazem com que seja
necessaria a utilizagdo de taneis de vento para a verificagio da aerodindmica de um
novo avido.

No entanto, o progresso continuo que a tecnologia computacional de software

¢ hardware vem sofrendo tem proporcionado a CFD uma maior fatia do processo de



projeto, principalmente nos estagios iniciais, quando os engenheiros estabelecem as
dimensdes principais e outros pardmetros basicos da aeronave. Esta fase envolve
muitas decisbes tomadas por tentativa e erro, por isso experimentos em tanel de
vento tornam-se bastante caros, pois requerem a constru¢do de um novo modelo para
cada teste realizado. Devido ao recente crescimento de CFD, um tipico ciclo de
projeto hoje envolve de dois a quatro testes de modelos de asa em tiinel de vento, ao
invés de dez a quinze, que era o padréo antigamente.

Sdo trés os principais atrativos do uso de CFD quando comparados ao
procedimento experimental. Primeiramente, a possibilidade de modelar fen6menos
da mecénica dos fluidos cuja reprodugo experimental seja proibitiva ou impossivel,
como por exemplo sistemas climdticos ou aeronaves supersonicas. Esta vantagem se
aplica ndo somente ao fendmeno fisico como um todo, mas também a certos detalhes
do experimento, que podem ser isolados durante a modelagem do fendmeno. Um
segundo aspecto € que a solugdio computacional do problema fornece a solugdo
completa para todas as varidveis, enquanto que num experimento a quantidade de
variaveis medidas e os pontos de medigo sfo bastante restritos. Um ultimo atrativo
se resume & capacidade de investigar sistemas fluidos mais rapidamente e com um
custo menor em relacio ao mesmo tipo de andlise feita procedendo-se
experimentalmente. Como conseqiiéncia disso, ha uma demanda consideravel por
especialistas no assunto, para aplicar e desenvolver métodos de CFD em empresas de
engenharia e instituicdes de pesquisa.

Ja os principais problemas residem na modelagem do fendmeno fisico, que
nunca representara a realidade de maneira totalmente fiel, e na implantagio do
método numérico, que pode fazer com que a solugdio divirja ou convirja para um
valor errado. Assim, a grande maioria dos esfor¢os no desenvolvimento de CFD hoje
em dia concentra-se nesses dois tdpicos. Pode-se afirmar que nos tltimos anos

evidenciou-se um estrondoso desenvolvimento nesses campos.

1.3 Layout do Trabalho

O trabalho pode ser dividido em duas partes, sendo a primeira tedrica e a

segunda pratica. A primeira se inicia com um estudo sobre a geracio de malhas para



CFD. Em seguida séio expostos os tdpicos de aerodinimica relevantes. Como ultimo
topico tedrico encontra-se wma descrigio do método de volumes finitos, que € o
método numérico utilizado nas simulagSes efetuadas neste trabalho. Nos topicos
supracitados, as dedugdes das equagBes e conceitos serio somente feitas caso elas
ndo facam parte do curriculo béasico de um curso de Engenharia Mecénica. Do
contrario, as formulas € teoremas serdo apenas apresentados, sem que haja
preocupagdo com suas demonstragSes. Caso se faga necessario uma introdugdio aos
conceitos basicos, recomenda-se a consulta a bibliografia indicada.

A parte pratica deste projeto pode ser dividida em duas grandes etapas. Da
primeira fardo parte a geragdo de malhas bidimensionais de folios, a simulagdo
utilizando o modelo de Euler, o levantamento da curva C; x o (coeficiente de
sustentagdo versus dngulo de ataque) e a comparagio dos resultados obtidos com
dados experimentais disponiveis na literatura. Ja a segunda etapa sera composta da
geracdo de malhas tridimensionais do conjunto asa-fuselagem com e sem suporte ¢

respectivas simulag¢fes utilizando o modelo de Euler,



2 GERACAO AUTOMATICA DE MALHAS NAO-
ESTRUTURADAS

Sdo vérios os métodos numéricos utilizados para a resolucio de problemas
em CFD. Entre eles estdo o método das diferencas finitas, método de elementos
finitos, método espectral e método dos volumes finitos. Este ultimo é utilizado nas
simulagSes deste trabalho e tera uma descrigio detalhada adiante. Todos estes
métodos tém carjter “eulerianc”, isto é, a andlise é focada num espago fixo em
relagdo ao sisterma de coordenadas adotado, e nfio na particula. Desse modo, é
necessario que se discretize o dominio do problema a fim de aplicarmos o método de
resolucdio. E disso que consiste a geracdo de malhas: € a discretizagio do dominio em
vérios elementos de forma geral pré-determinada, com a finalidade de estabelecer a
posicdo dos pontos (nds) para os quais serdo calculadas as solugSes pretendidas, A
geragdo de malhas, a determinagfo das condigdes de contorno e condigdes iniciais e
o ajuste dos pardmetros de solugio constituem 0 que se costuma chamar de pré-
processamento do problema.

A fase de geragdo de malhas é muito importante na medida em que a geracio
de uma malha vilida num dominio com uma geometria complexa ndo é uma
operaglo trivial e pode ter um custo bastante grande em termos de tempo de
processamento, Aldm do mais, a criagio de uma malha coerente com as
caracteristicas fisicas do problema considerado € crucial, porque a qualidade da

solugdo computada est4 fortemente relacionada com a qualidade da maiha,
2.1 Nocodes gerais relativas a malhas:

Uma malha de um dominio, €2, € definida por um conjunto, 7, que consiste
de um numero finito de segmentos em uma dimensdo, segmentos, tridngulos e
quadriliteros em duas dimensSes e os elementos anteriores mais tetraedros,
pentaedros e hexaedros em trés dimensdes. Os elementos, K, de tal malha devem
satisfazer a um certo mimero de propriedades que serfio introduzidas a seguir. A

primeira diz respeito & conformidade, de acordo com a definigfio:



Definicfio: 77 ¢ uma malha conforme de Q se as seguintes condi¢des sdo

satisfeitas:

1.
2L

Q=u xer, K

Todos os elementos de Th tém interior de &rea (no caso bidimensional) ou
volume (no caso tridimensional) ndo nulos

A intersecdo de dois elementos quaisquer de 7% se enquadra em um, e

apenas um, dos seguintes casos:

& conjunto vazio
¢ um ponto comum aos dois elementos
® uma aresta comum aos dois elementos

e uma face comum aos dois elementos

Se 7% € uma malha conforme, entdo dizemos que ela representa Q de maneira

conforme quanto a aspectos geométricos. Na pratica, 7 é uma particionamento de Q,

tdo preciso quanto possivel. Quando €2 nfio é um dominio poligonal (ou poliedral), 75

serd apenas uma discretizagio aproximada do dominio.

Os elementos constituintes de uma malha devem geralmente satisfazer

algumas propriedades especificas:

Propriedades geométricas:

!

A variagio dimensional entre dois elementos adjacentes tem que ser
progressiva e descontinuidades de elementos para elementos ndo podem
ser muito abruptas.

A densidade de elementos em regides de gradientes elevados de alguma
grandeza envolvida no problema deve ser alta.

Quando os elementos sdo do tipo triangular, deve-se evitar a presenca de
angulos obtusos nos elementos.

Os elementos devem se adequar as caracteristicas anisotropicas do

problema.



Propriedades de natureza fisica;

Essas propriedades estéo fortemente ligadas aos aspectos fisicos do problema
em consideragdo. A configuracdo geral e individual dos elementos deve ser definida
de acordo com o comportamento do problema.

Existem numerosos algoritmos para a construgio de malhas bidimensionais e
tridimensionais. A escolha do método esta fortemente ligada a geometria do dominio
considerado. As malhas geradas podem ser agrupadas em duas classes principais:
malhas estruturadas e malhas ndo-estruturadas. Uma malha é chamada de
estruturada se sua conectividade é do tipo de diferencas finitas. Uma malha ¢é
chamada de nfo-estruturada se sua conectividade é de qualquer outro tipo. Por
conectividade de uma malha entendemos a definic3o da conexdo entre seus vértices,
em outras palavras, a conexfo entre os nos globais de uma malha e os nods locais de
cada elemento da malha.

Elucidando melhor os conceitos: para uma malha estruturada, a conectividade
entre 0s nds ¢é do tipo (i, j, &), isto é, assumindo que indices de um certo né sejam (i,
J» k), seu vizinho esquerdo terd os indices ((i~1), j, k) e seu vizinho direito terd os
indices ((i+1), j, k). Este tipo de malha ¢ mais apropriado para geometrias simples e
simétricas, tais como configuracdes quadrilaterais e hexaedrais. Para geometrias mais
complexas, é necessirio m tratamento especial para que este tipo de estruturagfio seja
concebido. O presente trabalho lida com simulacdes que utilizam malhas ndo
estruturadas, que por sua vez apresentam menos restrigdes geomeétricas, mas tem um
custo computacional major.

Podemos ainda dividir os diferentes algoritmos de geragio de malha em sete

classes:

1. Meétodos manuais ou semi-automdticos: adequados para geometrias
relativamente simples. Estdo nessa classe os métodos enumerativos, nos
quais os pontos, arestas, faces e elementos que compde a malha sio dados
explicitamente; e métodos apropriados para situagdes geométricas

particulares, como formas cilindricas e hexaedrais, os quais usam



propriedades especificas da geometria explicitamente e a conectividade &

conhecida “a priori”,

Meétodos que utilizam mapeamento: constroem a malha a partir do
mapeamento, através de uma transformagfo conforme de um dominio, de

uma malha de geometria simples.

Meétodos baseados na solugdo de um sistema de equacies diferenciais a
derivadas parciais: essa abordagem se assemelha & segunda, mas aqui a
fungfo de mapeamento ndo é dada a principio, mas é computada a partir
da resolucio de equagdes diferenciais a derivadas parciais, de forma a
satisfazer certas propriedades de interesse, tais como densidade de

elementos e ortogonalidade.

Méiodos baseados na deformacdo e modificacdo local de wma malha:
este método aplica-se principalmente a malhas de ficil obtengdo, do tipo
quadtree, em casos bidimensionais, ou octree, para casos tridimensionais.
Nestes casos o dominio estd encerrado num quadrilitero ou num
paraielepipedo que é divido em subconjuntos na forma de caixas. Esses
subconjuntos sdo construidos pela decomposicio baseada em uma arvore
quaterndria (para dimensio 2) ou arvore octal (dimensio 3). A rede

resultante € entfo utilizada para criar a malha desejada.

Meétodos que derivam a malha final, elemento por elemento, dos dados do
conforno. basicamente existem duas abordagens: métodos de frente
progressiva (“advancing front methods™) e algoritmos baseados na
construgdo de Voronoi-Delaunay. Estes métodos criam nés internos e
elementos, comegando da fronteira do dominio. Esta fronteira pode ser
dada de maneira global (por exemplo, definidos de forma analitica) ou de
maneira discreta (como uma lista de arestas de faces triangulares). Esta
classe de métodos € de particular interesse neste trabalho, pois é a que os
softwares de geragdo de malhas utilizados (ICEM e Gambit) empregam.



6. Meétodos que utilizam a composicdo de malhas de subconjuntos baseados
na modificac@io geométrica ou topologica dessas malhas: neste caso, as
malhas dos subconjuntos podem ser obtidas por qualquer um dos métodos
anteriores. O problema é entdo divido em um conjunto de “sub-
problemas™ de menor complexidade, que sdo entio resolvidos por uma ou
mais classes das anteriormente citadas e o resultado final é entdio obtido

por transformagdes e a adig@io dos resultados parciais.

Assim sendo, percebe-se que as principais diferengas entre os algoritmos de
geragio de malhas estdo na generalidade do método, principalmente com relagio &
geometria, e a variedade, quantidade e forma dos dados que tem que ser fornecida ao
algoritmo.

O estabelecimento da nogfio de malha de tal forma que esta seja conveniente
em termos da computagio futura precede a escolha do método geral de concepgio da
malha. Escolhido o método, existem diferentes maneiras pelas quais ele pode ser

implementado.

2.2 Descri¢do geral de malhas:

Uma malha tem que ser descrita de acordo com a sua aplicagio. No caso de
simulagSes de escoamentos externos, que é o que ocorre neste trabalho, sdo
necessarias as definigbes de objetos sélidos € da zona fluida que os circunda. Nesta
definicdo deverfio estar contidas todas as informacSes necessarias considerando os
varios passos na computagdo. Estas informagdes incluem geometria, condicBes de

contorno. Elas podem ser agrupadas em trés tipos:
s Informacio geométrica:
Aqui se incluem a descrigio da malha, ou seja, como seus elementos cobrem

0 dominio, e uma espécie de historico que contenha toda a informagfio previamente

utilizada na construgio dos elementos. Também tem que estar descrito o tipo de



10

elemento (segmento, tridngulo, quadrilatero, tetraedro, pentaedro, hexaedro ou
outro),

A maneira pratica da descrigio da malha se constitui na listagem dos vértices
dos elementos, a conectividade, as coordenadas dos vértices e a topologia, que é a

descrigdo das arestas e faces de um elemento pelos seus vértices.
» InformacGes necessarias ao processamento:

Encontram-se aqui agrupados os dados para computagio das matrizes,
solugdo dos sistemas e visualizagio dos resultados. Estas informagdes variam de
acordo com o algoritmo numérico utilizado para a resolugfio do problema. Exemplos
s40 o numero e a lista dos nds dos elementos.

E preciso frisar que 0s nds e os vértices de um elemento podem coincidir ou
ndo. Podem existir nos intermediarios localizados nas arestas, faces ou interior do
elemento. Convenciona-se entdo uma ordem de numeragéio, de modo a simplificar a
representagdo dos elementos. A seguir sio dados quatro exemplos de elementos

triangulares, com 0s respectivos nds numerados e indicados:

w

&

Figura 2.1- Diferentes numeracdes dos nés de um elemento triangular
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o Informacoes fisicas:

Nesta classificacio estdo as condigGes iniciais ¢ de contorno e caracterizagio

fisica dos elementos (material e propriedades, por exemplo).

2.3 Metodologia geral para a criagdo de malhas:

A concepeiio de uma malha pode ser decomposta em trés passos:

e Analise do problema;
¢ Defini¢éo formal do processo de geragéio da maiha;
e A construcio da malha propriamente dita.

O primeiro passo consiste na analise da geometria do dominio e do problema
fisico a ser resolvido. Essa analise deve ser feita segundo uma metodologia fop-
down, ou seja, na decomposi¢io de umh problema complexo numa série de problemas
mais simples.

A construgio formal da malha, que constitui o0 segundo passo, leva em conta
os resultados da andlise efetuada no primeiro passo e é baseada numa construgio
bottom-up, que é a definicio de objetos simples tornando a solu¢io do problema
completo possivel através da soma das solugBes dos objetos.

Por ultimo, a construgio da malha propriamente dita € feita através do uso de
um algoritmo apropriado de geragdo de malhas e consiste de duas fases: a definigio

do conjunto de dados relevantes e a geragio real da malha.

2.4 Métodos de frente progressiva (Advancing front
methods):

Aqui ser4 feita uma introducgdo geral ao método empregado pelos softwares
utilizados para gerar as malhas das simulagGes deste trabalho (ICEM e Gambit). Esta
classe de geradores de malhas foi desenvolvida entre as décadas de 70 ¢ 80 ¢ foi a
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primeira solugdo automética para a geragio de malhas para dominios de geometrias
arbitrarias. Basicamente, os algoritmos constroem a malha do dominio a partir da
fronteira do mesmo. Os elementos utilizados sio tridngulos no caso bidimensional e
tetraedros no caso tridimensional. Os dados demandados sdo as fronteiras do
dominio ou, mais precisamente, sua discretizagio poligonal (para dimensio 2)
descritos por uma lista de segmentos, ou sua discretizagio poliedral (para dimensdo
3) descritos por uma lista de faces triangulares.

O processo € iterativo: uma frente, inicializada por um conjunto de itens da
fronteira dada, € analisada a fim de estabelecer uma zona de partida, a partir da qual
um ou mais elementos internos sdo criados; a frente é entdio atualizada e o processo
de criagdo de elementos € repetido se a frente nio for um conjunto vazio. O
algoritmo pode ser sumariado da seguinte forma (veja também o esquema mostrado

na Figura 2.2):

e Inicializagdo da frente;
e Andlise da frente:
—  Determinacio da zona de partida;
— Andlise da regifo:
* Criag8o dos pontos internos e dos elementos internos;
= Atualizacio da frente.

¢ Se a frente nfio for um conjunto vazio, ir para “Analise da frente”.



13

Cantorno dade

Frentevazia? >0 o FIM

e

Zona de partide

l

Criacdo de elemenitos

Figura 2.2 - Esquema geral do método de frente progressiva.

A analise da frente e a criagdo dos elementos podem ser feitas de vérias
formas. Aqui serdo descritas uma forma para o caso bidimensional e uma para o caso
tridimensional. Logo apds sfio introduzidas algumas extensSes que servem para
controlar a criagdo dos pontos internos e dos elementos, de tal maneira que a maltha
resultante tenha algumas caracteristicas particulares, como elementos isotropicos,

elementos anisotropicos, etc.

2.4.1 Métodos de frente progressiva em duas dimensées:

Como ja foi exposto, este tipo de algoritmo constréi a matha do dominio Q
com tridngulos que partem do seu contorno. Na pratica, uma aproximacio poligonal
do contorno € usada em termos de uma lista dos seus elementos constitutivos. O
interior do dominio, ou seja, a zona a ser discretizada, esta bem definida por causa da
orientacdo do contorno servindo como dado de entrada. A frente inicial F é definida

como o conjunto de segmentos da fronteira C descrevendo o dominio Q.



14

Dada F, pode-se detalhar a maneira pela qual os tridngulos sdo criados.
Enquanto o processo de criagdo dos tridngulos internos progride, a fronteira C e a
frente F sdo atualizadas. Considerando F o atual estado da frente, entdo sua anslise é
baseada no exame das propriedades geométricas dos seus elementos constituintes.
Chamando de a o dngulo formado por dois segmentos consecutivos da frente F,

entdo trés situagbes ou padrdes sdo identificados:

T " - ~ . .
1. a <—2—, os dois segmentos com dngulo o s3o mantidos e tornam-se dois

lados do tridngulo criado (Figura 2.3);

Figura 2.3 - Padrio 1

T 2r ; ,. . .
2. —<a <—, dos dois segmentos com angulo o, um ponto interno e dois
3

tridngulos sdo gerados(Figura 2.4);

I
cl
Y 8 Se
Sy $3 34
4
53

Figura 2.4 - Padriio 2

2n p 3 .n I
3. ?<a , um segmento ¢ mantido, um tridngulo é criado com este

segmento sendo um dos lados e um ponto interno (Figura 2.5);
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Figura 2.5 - Padrio 3

As posicbes dos pontos internos criados s3o definidas de forma que sejam
GOtimas, significando que os elementos que tém esses pontos como vértices sejam os
mais regulares possiveis. No caso do padrio 2, o vértice é gerado na linha bissetriz
do angulo o a uma distincia computada a partir dos respectivos comprimentos das
arestas da zona de partida: a localizagdo deste ponto interno S é calculada pela

formula:

d

SS;

1
= (2d, s +2dg, + dy +dy ) (2.1)

no caso dos angulos § e y (Figura 2.4) terem seus valores entre /5 e 21 - /5
radianos (o valor n/5 é empirico). Para outros casos, o padrio 1 é utilizado. No caso
do padrio 3, um tridngulo o mais proximo de um egqiiilitero possivel é formado
usando o segmento mais curto da zona de partida.

Na criacio de cada ponto, € necessario verificar se o ponto esta dentro do
dominio ainda no coberto pelos elementos ja construidos. Isto quer dizer cada ponto
criado tem que estar dentro do dominio considerado e fora de qualquer elemento
existente, Essa verificagdo, crucial para este tipo de método, baseia-se no
conhecimento exato da vizinhanga da zona que estd sendo criada. No caso
bidimensional, um ponto sera interno se a intersecgfio de todos as arestas que dele
partem com qualquer aresta da frente € um conjunto vazio. No caso de dominios com
um ou mais loops internos (“buracos™), ¢ necessario considerar ainda a condigfio de
que nenhum tridngulo formado com o ponto em questdo contenha um ponto, em
qualquer segmento, do contorno de qualquer loop interno presente,

Uma nova frente  é formada pela supressdo dos segmentos que pertencam

aos tridngulos criados e 4 antiga frente; e pela adigdo dos novos segmentos dos
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tridgngulos criados, que nfo sejam comuns a dois elementos. O estado atualizado de F
¢ entdo processado da mesma forma. A Figura 2.6 mostra varios estados da frente em
evolugdo correspondendo ao dominio mostrado na Figura 2.7. Uma vez que F seja

um conjunto vazio, a maltha final est4 constituida.

i e

Figura 2.6 - Estados da frente progressiva

¢V
ra¥a
Varvavatiav

s ralhtra

Figura 2,7 - Maiha final

No caso de dominios fortemente néio convexos, 0 método pode nfio convergir.
Além disso, uma variagio muito aguda na distribuigiio dos pontos na fronteira pode

produzir um resultado negativo similar. Para sanar este problema, considera-se
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apenas subconjuntos primarios adequados, ou um método diferente tem que ser
usado. De fato, este resultado negativo € uma conseqiiéncia da dificuldade em provar
a validade do método teoricamente, mas uma implementagio mais astuta pode
superar este problema.

A triangulaciio obtida estd claramente relacionada ao nmimero e localizagdo
relativa dos pontos que discretizam a fronteira. Assim, especificando os pontos da
fronteira adequadamente, é possivel obter uma densidade variavel de elementos em
certas regides da malha.

A malha final pode ser polida a fim de obter tridngulos de melhor qualidade.
Este processo corrige a posigio dos pontos criados usando informagdes locais

globalmente. O resultado € mostrado na Figura 2.8.

i
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Figura 2.8 - Malha antes ¢ depois de ser polida

Existem numerosas variagSes do método de frente progressiva. Em particular,

a zona de partida pode ser escothida como:

e Uma parte do contorno tal que seus elementos constitutivos satisfacam
certas condicbes (a Figura 2.6 ilustra o resultado de um algoritmo
pertencente a esse grupo);

e A fronteira inteira constitul a frente, e seus elementos constitutivos

participam da criagdo de elementos numa ordem pré-definida.

A primeira abordagem se aplica especialmente a zonas particulares, por

exemplo, aquelas que contém dngulos pequenos. A segunda abordagem produz uma
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inflacdio da frente inicial (Figura 2.9) ou a propagacéo de uma linha inicial (Figura
2.10),

Figura 2.9 - Frente progredindo por inflagio

Figura 2.10 - Frente progredindo pelo avango de uma linha

Este método pode também ser aplicado para a criacdo de quadrilateros.
Baseado no mesmo principio, o algoritmo intenta em criar quadrildteros com a forma
a mais regular possivel. Este processo utiliza tridgngulos em locais impossiveis de

serem cobertos por um quadrilatero ou uma combinacéo deles.

2.4.2 Meétodos de frente progressiva em trés dimensées:

A aplicagfo de técnicas de frente progressiva em trés dimensSes é obviamente
mais delicada e os problemas inerentes a esse tipo de abordagem sio mais dificeis de
serem solucionados. No caso tridimensional, o dominio é discretizado em elementos

tetra¢dricos, construidos a partir dos dados da fronteira. Na pratica, uma
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aproximacfio poliedral do contorno ¢ utilizada e se constitui de uma lista de faces
triangulares. O algoritmo € baseado no mesmo tipo de esquema utilizado para o caso
bidimensional (Figura 2.2). O processo ¢ iterativo: a partir de um dado contorno C e
uma frente a ele associada F, as propriedades das faces de F, em termos de tamanho
e angulacdo, e da sua vizinhanca, sfo analisadas a fim de selecionar uma zona de
partida.

De acordo com 0 caso considerado, um elemento é criado com as faces
selecionadas ou um ponto interno € gerado de forma a permitit a criagdo de
elementos através da ligagdo dele com as faces selecionadas através de arestas
simples. As condi¢Ses referentes a criagiio dessas novas arestas sdo: por um lados, as
arestas que contém o ponto interno criado nfo podem interceptar uma face de
qualquer elemento da frente e, por outro lado, as faces que contém o ponto interno
criado ndo podem ser interceptadas por qualquer aresta da frente. No caso de
dominios com um ou mais loops internos, é necessario considerar ainda a condigio
de que nenhum elemento formado com o ponto em questdo contenha um ponto, em
qualquer segmento, do contorno de qualquer loop interno presente.

O novo estado da frente F~ é formado pela remocio das faces dos tetraedros
criados que pertencam & frente antiga F, e pela adigio das faces criadas para compor
os novos elementos, caso essas faces ndo sejam comuns a dois elementos. F’ é
processada do mesmo jeito, e a malha final é obtida a partir do momento que a frente

seja um conjunto vazio.

A eficiéncia e a confiabilidade do método dependem da forma como o espago
é controlado. Na pratica, é preciso que se acesse o contexto relativo de qualquer
segmento da frente rapidamente, ou seja, que se determine a vizinhanga de qualquer
trigngulo da malha em progressdo. Este requisito é particularmente importante no

caso tridimensional em termos de eficiéncia do algoritmo.

2.5 Geometria Virtual

Este item ndo se refere especificamente 4 geragdo de malhas, porém trata de

uma abordagem utilizada pelo gerador de malhas GAMBIT para manipular
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geometrias importadas de softiwares CAD e para criar geometrias dentro da sua
propria interface CAD. Esta abordagem ¢ largamente utilizada em casos
tridimensionais e este trabalho nfo fiigiu a essa regra. Neste item serdo expostos
algumas caracteristicas deste tipo de abordagem, de modo a elucidar a metodologia
utilizada para a geracio dos volumes geométricos que receberam as malhas
tridimensionais. Cabe aqui observar que essa abordagem nfo foi em momento algum
utilizada nas simula¢des bidimensionais.

O software GAMBIT disponibiliza uma grande variedade de ferramentas que
possibilitam a criagdo e modificacdo de modelos soélidos. Estas ferramentas

envolvem trés tipos gerais de entidades:

o Entidades reais
e Entidades virtuais

o Entidades facetadas

Por entidades podemos entender pontos, curvas, superficies ou volumes.
Entidades reais possuem suas descrigdes geométricas proprias, isto €, elas sfo
definidas por formulas matematicas que descrevem suas localizacdes e formas.
Entidades virtuais nfo possuem suas proprias descrigbes geométricas, ao invés disso
elas derivam sua geometria através de referéncias a uma ou mais entidades reais.
Entidades facetadas sfo definidas com referéncia a uma malha. A interface GAMBIT
trata entidades facetadas como se fossem virtuais, por tanto, daqui por diante, o que
se afirmar sobre entidades virtuais se aplica também a entidades facetadas, salvo
indicacdo contraria.

As operagBes geométricas ditas reais empregam apenas enfidades reais e
resultam na criagio ou modificagio de entidades topoldgicas reais. As operagdes
geométricas virfuais podem empregar qualquer combinacdo de entidades virtuais
e/ou reais mas resultam somente na cria¢io ou modificagio de entidades virtuais. A

seguir sdo listadas algumas operagdes reais e virtuais:

Operacdes geométricas reais:
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= Criagfio de vértices reais em pontos especificados no espago.
= Formacio de curvas, faces e volumes reais a partir de entidades
topoldgicas também reais de mais baixo nivel.

—=> Criago de volumes primitivos reais, tais como prismas e cilindros.

Modificacfo;

— Divisdo de curvas, faces e volumes.

= Operacdes booleanas para faces e volumes.

Operacies geométricas virtuais:

Criagfio:

= Criagfio de vértices virtuais em localidades confinadas a curvas ou
faces reais.
= Formag@o de curvas, faces e volumes virtuais cujas formas sdo

definidas por entidades existentes

Modificagio:

=> Reposicionamento de vértices virtuais hospedados por uma curva ou
face.

= Divisiio de curvas, faces ou volumes reais ou virtuais.

= Amalgamagdo de duas entidades reais ou virtuais numa unica
entidade virtual.

—=> Colapso de duas faces reais ou virtuais localizadas entre duas faces
vizinhas.
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Para entender o proposito basico das operagdes geométricas virtuais,
podemos considerar que um modelo GAMBIT possui dois diferentes dominios
logicos: um de primeiro plano e outro de plano de fundo. No dominio do primeiro
plano estdo as entidades topologicas que sdo observaveis pelo exame direto do
modelo. Essas entidades refletem a aparéncia do modelo tanto na forma quanto na
estrutura. No dominio do segundo plano estdio as entidades que nfo sio diretamente
observaveis mas que possuem as definigSes matematicas que definem a forma geral e
a estrutura do modelo.

Como exemplo da diferenga entre o primeiro plano e o plano de fundo de um
modelo, consideraremos um modelo bidimensional mostrado na Figura 2.11. O
modelo consiste de seis arestas reais arranjadas na forma de um hexagono plano
irregular. Cada aresta compartilha seus vértices finais com suas arestas vizinhas,
estando, portanto, conectada a essas arestas, Todas as seis arestas e vértices existem

no primeiro plano do modelo.

verlex 3
edge 2 edge 3
verlex 2
verex4
edge, 1
edga 4
verax |
verlex 5
edga §
edge 3
vertex &

Figura 2.11 — Poligono utilizado para exemplo,

Cada aresta e vértice mostrado na Figura 2.11 possui sua descri¢do
geometrica propria; as arestas s3o definidas como curvas e os vértices sdo definidos
como pontos especificos no espago. As definicbes combinadas de todas as seis

arestas e vértices constituem a descricdo geométrica total do modelo.
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Ao desempenharmos uma operacdio de amalgamacfio virtual que envolve as
arestas edge./ e edge.2 na Figura 2.11, GAMBIT as substitui no primeiro plano por
uma curva unica, chamada de v_edge. 7, como ilustrado na figura abaixo:

vertex 3

verfex 4

edge 4

vertex |
verfex §

verlox B

Figura 2.12 — Poligono exemplo apds a operacio de amalgamacio.

A curva virtual gerada nfo possui sua descrigdo geométrica prépria. Ao invés
disso, sua forma € definida apenas pela referéncia as descri¢des geométricas das
arestas edge.l e edge.2, que agora estdo no plano de fundo. Conseqiientemente, o
modelo mostrado retém sua forma hexagonal original, mas inclui apenas cinco
curvas topologicas, sendo que uma delas € virtual.

A disting8o entre os planos primeiro e de fundo € importante na medida em
que as operagdes de visualizagdo e geragdo de malha envolvem somente os
componentes topologicos que existem no primeiro plano do modelo. Por exemplo, se
gerarmos uma malha para a curva representada pelas arestas edge.l e edge.? na
Figura 2.11, € preciso que se aplique um esquema de discretizagdo independente para
cada aresta. Porque GAMBIT possui vinculos nas suas regras de geracdo de malha
que obrigam que se criem nds nos vértices finais das arestas com malha, € necessario

que se crie um nd no vértice verfex. 2, que constitui o ponto onde a curva se dobra:
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edgs 1

@ &)

Figura 2.13 — Discretizagio das arestas do peligone exemplo.

Em contraste, se for aplicado o esquema de geragiio de malha a curva
representada por v_edge.7, GAMBIT permite que se aplique um Winico esquema de
discretizagdo a curva. Além do mais, porque v _edge.7 é uma entidade topoldgica
individual, GAMBIT nfio fica obrigado a criar um ndé no ponto de dobra da curva.
Em outras palavras, a existéncia de uma aresta virtnal no primeiro plano impde
menos vinculos gerais na localizagio dos nds do que a sua equivalente virtual. Essa
caracteristica faz com que as operagdes virtuais disponibilizem ao usudric uma
maneira conveniente de controlar a forma e a densidade da malha em regiBes
localizadas do modelo e, por conseqiiéncia, do modelo como um todo.

Ha duas categorias nas quais as entidades virtuais podem ser classificadas.

Séo elas:

¢ Relacionamenio: define a associa¢fio entre entidades especificas reais ou virtuais

por meio de uma operagdio geométrica virtual. Inclui duas classificagGes gerais:

o Hospedeiro: sio entidades reais ou virtuais que de alguma forma sfo
referenciadas por uma ou mais entidades virtuais. Na maioria nos casos,
estd0 no plano de fundo do modelo.

o Héspede: séio entidades virtuais que referenciam uma ou mais entidades

reais ou virtuais. Existem no primeiro plano do modelo.



25

¢ C(lasse: descreve a natureza da associagio, ou seja, a maneira pela qual uma dada
entidade virtual € definida por uma ou mais entidades reais as quais se refere.

Existem cinco classes de entidades virtuais:

o Superconjunto: ¢ uma entidade virtual que referencia duas ou mais

entidades reais.

o Subconjunto: é uma entidade virtual que constitui um elemento de um
conjunto que referencia uma tnica entidade hospedeira.

o Interpolante: ¢ uma entidade virtual cuja descricio geométrica representa
uma média de duas ou mais entidades reais as quais ela se refere.

o Parasita: ¢ uma entidade virtual que referencia um unico hospedeiro de
maior ordem topolégica, de forma que sua geometria é definida pela
entidade hospedeira.

o Orfi: ¢ uma entidade virtual que nfio referencia nenhuma entidade
hospedeira, derivando sua geometria apenas de elementos de menor

topologia que compde suas fronteiras.

Existem dois tipos gerais de operagGes geométricas virtuais:

¢ Baixo nivel: sdo operagOes especializadas que agem em entidades topoldgicas

individuais ou pares de entidades. GAMBIT disponibiliza as seguintes:

o Amalgamac8o: substitui duas entidades conectadas por uma tinica entidade
virtual (superconjunto).

o Divisfio: separa uma entidade individual em duas entidades virtuais
distintas (subconjuntos).

o Conexdo: combina duas entidades individuais nfio conectadas em uma
nica entidade virtual (interpolante).

o Construciio: cria entidades virtuais independentes (parasitas ou Orfis).
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¢ Alto nivel: consistem de duas ou mais operagdes de baixo nivel que sdo

agrupadas de acordo com propésitos especificos. GAMBIT disponibiliza as

seguintes:

Colapso: divide uma face e amalgama as partes resultantes em duas ou
mais faces vizinhas.
Conexdo T: divide arestas por vértices que existem dentro das tolerancias

das arestas, e entdo conecta as entidades resultantes.

Dentro das aplicagdes de geometria virtual, encontramos as quatro mais

importantes:

L

“Limpeza” de uma geometria importada: corregio de problemas quando
a geometria importada é incompleta ou inconsistente. Por uma geometria
consistente se entende uma geometria cujos componentes topoldgicos de
uma dada entidade sfio coincidentes e conectados com componentes de
entidades vizinhas. J4 por geometria completa entende-se aquela que
inclui definicbes sobre formas de superficie e disponibiliza informacdes
de conectividade.

Simplificacdo da geometria: modificacido do modelo a fim de criar
componentes capazes de receberem malha; remogdo de detalhes
insignificantes do modelo.

Decomposi¢do da geometria: divisio de uma geometria complexa em
componentes menores e mais facilmente “discretizaveis”.

Modifica¢do da malha: modificacdo de uma geometria discretizada e por

conseguinte mudanga das posi¢Ges de nds de malha existentes.
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3 TOPICOS DE AERODINAMICA

A primeira parte pratica desse trabalho refere-se a simulagdes bidimensionais
de perfis de asa. Por isso, neste capitulo, sdo feitas consideragbes tedricas e
tecnologicas sobre os perfis de asa e sua utilizagdo. Essas consideragdes abrangem
definicdes de termos técnicos e grandezas fisicas, introdu¢do de modelos de analise
de dados e aplicacdo dos conceitos de aerodinimica a perfis de asa. Por ventura dessa
iltima, para um completo entendimento desse capitulo, é necessario que o leitor
esteja familiarizado com os conceitos de aerodinimica e mecénica dos fluidos basica.

Caso contrario, recomenda-se que se recorra 4 referéncia [1].
3.1 O significado das caracteristicas dos perfis de asa

Por asa entendemos as superficies que suportam aeronaves por meio da
reagdo dindmica com o ar. Uma aeronave pode ter varias asas que podem estar fixas
na fuselagem ou possuir movimento relativo a esta, como no caso de helicopteros.
Neste trabalho, estaremos interessados somente em asas fixas.

As reagdes dindmicas com o ar se devem a duas fontes basicas: a distribuicdo
de pressdo e a distribuicdo das tensdes de cisalhamento pela superficie da asa. Esses
sdo 0s tmicos mecanismos pelos quais um fluido pode transmitir forga para um corpo
ao redor do qual esta escoando.

Para todos os tipos de asa, 0 desempenho aerodinidmico € fortemente afetado
pela geometria de sua secdo transversal, em outras palavras, pela forma do perfil da
asa. As caracteristicas de uma asa podem ser preditas por parAmetros aerodindmicos
conhecidos do perfil da asa se a envergadura (distancia entre os dois extremos
longitudinais da asa) € significativamente grande em comparacdo & corda (distancia
entre os bordos de ataque e fuga), se os nimeros de Mach envolvidos no fenémeno
sdo subcriticos € se a componente da velocidade na diregdo da corda é
significativamente maior que componente na diregio da envergadura. Esses
requisitos sdo atendidos por um grande nimero de aplicagGes.

Aqui e no restante do trabalho estaremos utilizando a nomenclatura

estabelecida pelo orgdo americano NACA (National Advisory Committee for
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Aeronautics), que é um padrio solidamente estabelecido na drea de aerondutica e
aerodindmica. Na Figura 3.1 estfiio indicadas as dimensdes e respectivas

nomenclaturas as quais estaremos nos referindo daqui por diante.

Bordo de ataque

Espessura
Linha média de cambagem
iCambagem
Linha da corda ) el S
| -

I" Corda ¢ ":! Bordo de
fuga

Figura 3,1 - Nomenclatura das dimensdes de vm aerofélio

A linha média de cambagem é o lugar geométrico dos pontos médios de
segmentos perpendiculares 4 propria linha, e que ligam as faces inferior e superior. O
ponto extremo dianteiro da linha média de cambagem é o bordo de ataque e o
traseiro € o bordo de fuga. A linha reta que liga os bordos de ataque e fuga é a linha
da corda do aerofdlio, e a distancia entre 0s bordos medida nessa linha € a chamada
corda c. A cambagem é a distancia méxima entre a linha média de cambagem e a
linha da corda, medida perpendicularmente a linha de corda. A espessura é a
distdncia méxima entre as superficies superior ¢ inferior, também medida
perpendicularmente 4 Jinha de corda.

A asa de uma aeronave a sustenta por através de uma forca chamada de
sustentacdo (L), que € gerada pelo movimento num meio fluido, no caso, o ar. Essa
sustentacdo € definida como a componente de forga agindo no plano de simetria
numa diregio perpendicular & linha de véo. Ja a forga que se opde diretamente ao
movimento da asa pelo ar estd sempre presente e é chamada de arrasto (D). Por
atitude se entende a forma como a asa interage com o ar que a circunda, durante sua
movimentagio.

Para uma dada atitude de asas geometricamente semelhantes, as forcas
tendem a variar diretamente com a densidade do ar, com a 4rea da asa e com o
quadrado da velocidade. Logo, é conveniente expressar essas forcas em termos de

coeficientes adimensionais que sfo fungdes principalmente da atitude da asa. Esses
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coeficientes sio chamados coeficienfe de sustentacdo (Cr) e coeficiente de arrasto

(Cn). A sustentagdo e o arrasto séo dados pelas seguintes expressdes:

I =% pV?SC, G.1)

D= %.p.Vz.S.CD (3.2)

p = densidade do ar
V = velocidade relativa da asa em relacdo ao ar

S =4areadaasa
Podemos ainda definir a pressfo dindmica, que € a dada pela formula:

1
q :E.,D.V2 (3.3)

entdo as formulas de sustentagdo e arrasto podem ser reescritas:

L=¢95C, (3.4)
D=qS5.C, (3.5)

E considerado um ponto de aplicacio fixo na asa para a sustentagio e o
arrasto. Uma especificagdo completa do sistema de for¢as atuando na asa requer o
conhecimento do momento (M) com relagdo a este ponto. Para um movimento
simétrico de asa com translacio apenas no plano de simetria, a for¢a lateral
perpendicular & sustentacdo e ao arrasto é nula, € o momento atua no plano de
simetria. Este momento tende a mudar o dngulo de ataque da asa, que é o angulo
entre o plano da asa e a direcfio da velocidade relativa da asa em relagfio ao ar. Esse
momento € chamado de momento de arfagem (“pitching moment™) e € expresso de

forma analoga ao arrasto e sustentaco, pela equagio:

M= %.p.VZ.S.c.CM —¢S8cC, (3.6)
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Cu= coeficiente de momento

¢ = comprimento da corda

Outros adimensionais que serdo utilizados adiante sio o coeficiente de

pressdo:

¢ =P P (3.7)

P« = presséo ao longe

e 0 coeficiente de tensdo de cisalhamento:

(3.8)

T = tensdo de cisalhamento

Podemos definir o centro de pressdo como sendo o ponto onde a resultante do
carregamento distribuido efetivamente é aplicada no corpo. Em outras palavras, o
centro de pressdo ¢ o ponto para o qual 0 momento aerodindmico é nulo. As
coordenadas do centro de pressdo (X Vo) com relagdio a uma referéncia para o qual

foi tomado o momento M, podem ser calculadas pelas formulas:

M

X, =—— 3.9

7 L.cosa (3-9)
M

e — 3.10

Yer D.sena (3.10)

onde o angulo de ataque cresce no sentido horario € a diregfio positiva do momento ¢

tal que faga a asa rodar no sentido horario, como ilustrado na figura;
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Figura 3.2 - Convengiio de sinais ¢ ilustracio

Uma maneira conveniente de descrever as caracteristicas aerodinimicas de
um perfil de asa € plotar os valores dos coeficientes (Cy, Cp e Ca) em fungéio do
angulo de ataque. Nesse tipo de grafico, podemos ver que o coeficiente de
sustentagdo cresce de maneira aproximadamente linear com uma inclinagdo chamada
de inclina¢do da sustentagdo (ag), até que um valor méaximo € alcangado. Nessa
regido, o fluido se move suavemente ao redor do aerofdlio e estd aderido a ele.
Depois do ponto de méxima sustentagfio, 0 escoamento tende a se separar do ponto
mais alto do aerofdlio, criando uma zona de recirculagio. Quando acontece esse
fendmeno, que ¢é devido a efeitos viscosos, ocorre uma diminui¢io abrupta da
sustentacdo e um aumento significativo do arrasto e dizemos que a asa estolou
(“stall”). Ao ponto de maximo coeficiente de sustentacio denotamos por Cr,mex. Este
ponto é um dos aspectos mais importantes da performance de um aerofdlio, porque
ele determina a velocidade de estol de uma aeronave . Como podemos ver pela eq.
(3.1), para uma dada sustenta¢do, quanto maior Czmar, menor a velocidade de estol.
Outro ponto vastamente utilizado na comparac¢io das performances dos aerofdlios é o
dngulo de ataque para sustenta¢do nula e é denotado por a;-¢. Para um aerofSlio
simétrico, a0 € zero, enquanto que para todos os folios com cambagem positiva
(linha média de cambagem acima da linha da corda), ¢z.¢ tem um valor negativo,

comumente da ordem de —2° ou -3°.
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Estol devido & separagic
do escoamente

“ | €1, s Q“
L >

o= dey . Inclinagto do
dyy Jox | Sustentacio

/rc‘l. T .

Figura 3.3 - Eshoco da variagiio de ¢, com ¢ ingulo de ataque num aerofélio

Ja o coeficiente de arrasto tem um valor minimo num angulo que tem baixo
coeficiente de sustentagfo, e a forma da curva ¢ aproximadamente uma parabola em
angulos menores que o angulo de estol. Se escolhermos um ponto apropriado para a
determinagio do momento, o coeficiente de momento permanece essencialmente
constante até o ponto de estol. Esse ponto é chamado de centro aerodindmico. Uma
medida da eficiéncia de um perfil de asa é dada pela razdo entre sustentagdo e
arrasto. Esse parimetro aumenta de zerp, para uma sustentacfo nula, até um valor
maximo, num valor intermedidrio de sustentacdo, depois do qual ele diminui
suavemente com o aumento do dngulo de ataque.

Numa asa, é desejavel que se tenha o menor arrasto possivel. Visto que o
coeficiente de sustentacdio para uma velocidade ripida € normalmente menor que
aquele correspondente a4 melhor razdo sustentagdo-arrasto, uma das melhores
maneiras de diminuir o arrasto é reduzir a area da asa. Essa reducio é usualmente
limitada por consideragdes de velocidade de estol e manobrabilidade. Logicamente,
essas consideragBes estdo diretamente ligadas com o méximo coeficiente de
sustentagdo que se pode conseguir. Por conseguinte, a asa deve ter um coeficiente
maximo de sustentacfo alto combinado com baixos coeficientes de arrasto para
situacbes de cruzeiro. Esta combinacio de qualidades desejaveis pode ser obtida

apenas de forma limitada para uma configuragdo de asa unica. Por isso, costuma-se
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fazer uso de alguns dispositivos retrateis como flapes (“flaps™) para proporcionar

caracteristicas de sustentagio maxima a asa.

As

J2 24

Lo 20

0 .08 16
Jo .08 1E
P Soez s
w0 o 4

o o o

S

-2 i

a &

s =

&, graus

Figura 3.4 -Curvas caracteristicas tipicas de nvma asa

No caso de experimentos com perfis, 0 mais comum ¢ substituir-se a area das

formulas dos coeficientes pelo valor da corda vezes uma medida padrio de

profundidade, normalmente I1m.
bidimensionais e mnos valores

comparagdo. Desse modo, temos:

Esta foi a abordagem utilizada nas simulagdes

experimentais tomados como referéncia para

L
€= Vi
7P
D
LpVie
M
M T

(3.11)
(3.12)

(3.13)
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onde d € um comprimento que caracteriza o pélo em relag8io ao qual o momento é

calculado.

Perfis NACA de 4 digitos:

Depois da segunda guerra mundial, o NACA definin algumas familias de
aerofdlios e as testou em laboratorios, a fim de levantar suas caracteristicas. Estes
testes foram os primeiros sistematizados para separar os efeitos da cambagem e da
distribui¢do de espessura e foram feitos para altos numeros de Reynolds, que sfo
comuns em aplicacdes praticas. Neste trabalho, na parte das simulagdes
bidimensionais, sdo utilizados perfis da familia de quatro digitos. Esta numeracéo ¢

feita da seguinte forma:

= O primeiro digito se refere 4 maxima cambagem em porcentagem e varia
de0a9.
= O segundo digito se refere a posigio do ponto de méxima cambagem em

décimos da corda, variando de 0 a 9.
» Qs dois altimos digitos se referem 2 espessura do folio, dado em termos
de percentual da corda e variam de 0 a 99.

3.2 Analise dimensional e semelhanca

Uma ferramenta imprescindivel para a utilizagdo pritica de resultados
experimentais ou de simulagdes é a analise dimensional do problema em questdo.
Para o caso de um aerofolio submetido a escoamento externo, utilizando uma base

fisica e intuitiva, podemos inferir que a forga resultante R dependera de:

1. Velocidade ao longe V.,
Densidade do fluido ao longe p.;
Viscosidade do fluido ao longe pi.0;

Ll

O tamanho do corpo, representado por um comprimento de referéncia.

Escolheremos para essa fungfio o comprimento da corda c;
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5. A compressibilidade do fluido, representada pela velocidade do som ao

longe a..

Tendo isso em vista, podemos definir a seguinte relagdo funcional:

R =f{Vas o pheo €, o) (3.14)

a qual podemos reescrever:

Seguindo o teorema de Buckingham pi, as dimensbes fundamentais, em

numero de trés, sdo:
m = dimens&o de massa
! = dimensdo de comprimento

f = dimenséo de tempo

Podemos entfio expressar as dimensGes das seis varidveis fisicas do problema:

[R] = mif?
(Vo] =i’
[p=) = miI”
[a) = It
[e]=1

[a.] = I’

Podemos expressar a equacio (3.15) em termos de trés produtos

adimensionais Iy, Il e I1s:

AL, I, [15) =0 (3.16)

Escolhendo V., po € ¢ como variaveis fisicas de referéncia, teremos:
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[y =fs(Vee, P €, R) (.17)
Ilz = fo( Ve, Do €, Uog) (3.18)
I =f5(Ver P €, Q) (3.19)
Calculando IT;:
I = Vo poctR = [Th] =m0 (mit?) = 1 (3.20)

m: d+1=0

l: ~3d+b+e+1=0

t: ~bh—=2=0

a solucdo para este sistema é b = -2, d = 1 ¢ ¢ = -2, Substituindo estes valores na

equagdo (3.20), temos:

R

m=-—2__
A

(3.21)

Podemos substituir ¢° pela 4rea da asa S e dividir o denominador por dois,
para chegarmos a uma formula de coeficiente de forca resultante, que chamaremos
de Cr:

R

VAT e (3.22)

1

Calculando I'l,:

L=V pocpd = [Ma]=mHU @ 'y =1 (3.23)

m: I+j=0
-3+h+i—j=0
£ —-h—-j=0

Ly
as
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a solugdo para este sistema é j = —1, A =1 e i = 1. Substituindo estes valores na

equagdo (3.23), temos:

I, = P _ Re (3.24)
i,

Este € o mimero de Reynolds, que fisicamente mede a razdo entre as forcas de

inércia e as forgas viscosas.

Calculando Is:
=V, pmk. o = [[L]=(ml 3)”.(lt'1).(l)’.(lt'1)" =1 (3.25)
m; k=0
I: 1-3k+r+s=0
f: —s-1=0

a solu¢do para este sistema é £ = 0, s = —1 e » = 0. Substituindo estes valores na

equagdo (3.25), temos:
[,=—==M (3.26)

Este € o nimero de Mach, que € a razdo entre a velocidade do escoamento e a

velocidade do som no fluido.

Podemos entdo expressar o resultado da andlise dimensional na forma:

R mVooC Vc-a
fz[} - ;_’p—a_J:flz(CR’Re7Mm) (327)
2 pme S “00 a“"

ou ainda:
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Cr = fs(Re, M) (3.28)

Este resultado nos mostra que a forca resultante R pode ser expressa em
termos de Ck, que por sua vez é fungdo apenas de Re e M, Portanto, os niimeros de
Reynolds e Mach sdo pardmetros de similaridade do escoamento bidimensional.

Como sustenta¢io e arrasto sdo componentes da for¢a R, podemos escrever:

Cy = fo(Re, M) (3.29)
Cp = fi(Re, M) (3.30)

Além do mais, uma relacio similar 4 eq. (3.14) existe para 0 momento

aerodindmico, ¢ a andlise dimensional leva a:

Car = fo(Re, M) (3.31)

No entanto, é preciso lembrar que a analise feita se aplica a um corpo dado a
um dado 4ngulo de ataque, «. Se fizermos o variar, entdo os coeficientes de forca e
momento em geral dependerdo de o. Portanto, podemos generalizar as relagdes

funcionais da seguinte forma:

Cr = fro(Re, M, @) (3.32)
Cp = fi{Re, M, ) (3.33)
Crr=f12(Re, M, o) (3.34)

E necessario lembrar que essas relagdes sdo validas para problemas que néo
envolvam termodindmica (escoamento compressivel) nem transferéncia de calor
(escoamento viscoso). Nesses casos, dependéncias quanto a certas temperaturas,
calotres especificos e condutividades térmicas deveriam ser acrescentadas. A
turbuléncia presente a montante também tem uma grande influéncia nos coeficientes
de forca.

Por fim, feita essa ressalva, entdo podemos definir escoamentos

dinamicamente similares como sendo fluxos onde:

1. As linhas de corrente sdo geometricamente similares;
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2. As distribuicbes de V' / Ve, p / po, T/ Ty etc. no campo de escoamento
sd0 as mesmas quando plotadas em relagdo a coordenadas adimensionais

comuns.
Estes requisitos sdo atendidos quando:

1. Os corpos e fronteiras solidas sdio geometricamente similares para os
escoamentos.

2. Os parametros de similaridade sdo os mesmos para os escoamentos.

3.3 Escoamento incompressivel ao redor de aerofélios

Neste capitulo estamos tratando de escoamentos inviscidos, por isso, qualquer
predigio do arrasto produzido pelo escoamento seria invalida. Entfo, aqui somente
trataremos da sustentacdo e dos momentos no aerofdlio, pois estas grandezas sdo
devidas & distribuigiio de pressdio que, abaixo do dngulo de estol, é ditada pelas
caracteristicas do escoamento potencial. Um escoamento ao redor de aerofdlio €
considerado incompressivel quando o nimero de Mach é menor que 0,3, garantindo,
com uma certa seguranca, que em nenhum ponto do campo do escoamento serfio

atingidas velocidades préximas a barreira do som.

A teoria discutida nesse capitulo permite o célculo da inclinagdo da
sustentagdo ap € de o ¢ para um dado aerofdlio. Ja o calculo de ¢/ mqx € um problema
complexo de natureza viscosa, portanto nio sera tratado aqui.

Vamos aqui introduzir o conceito de filamento de vortices, que é um conjunto
de vortices pontuais com intensidade I' alinhados. O escoamento induzido em
qualquer plano perpendicular ao filamento € idéntico aquele induzido por um vértice
pontual de intensidade I'. Um filamento de vortices estda desenhado em perspectiva

na Figura 3.5.
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Figura 3.5 - Filamento de vortices

Outro conceito que sera aqui introduzido € o de cortina de vortices, que nada
mais € do que um nimero infinito de filamentos retos de vortices dispostos lado a
lado, onde a intensidade de cada filamento € infinitesimalmente pequena.
Representacdes de uma cortina de vértices encontram-se na Figura 3.6, Chamemos
de s a distancia medida ao longo da cortina de vortices no plano de sua secéo
transversal. Definimos y = ¥(s) como sendo a intensidade da cortina, por unidade de
comprimento ao longo de s. Entdo, a intensidade de uma porgio infinitesimal ds da
cortina € yds. Esta pequena secfio da cortina pode ser tratada como um vortice

distinto de intensidade yds.

/g P(x, z)

Pes

Figura 3.6 - Cortina de virtices em perspectiva e em corte transversal

Considerando agora um ponto P no campo de escoamemnto, localizado a uma

distancia r de ds, as coordenadas cartesianas de P s@o (x,y). A pequena segio da



41

cortina de intensidade yds induz uma velocidade infinitesimalmente pequena, dV, no
ponto P, que é dada por:

s
2nr

dV = (3.35)
e tem dire¢do perpendicular a r, como mostrado na Figura 3.6. A velocidade induzida
em P pela cortina inteira é a somatoria vetorial da eq. (3.35) do ponto ¢ até o ponto 5.
Como temos que tratar com uma soma vetorial, as vezes € mais conveniente lidarmos
com o potencial de velocidades ¢. Fazendo referéncia novamente a Figura 3.6, o
incremento no potencial de velocidades, d¢, induzido no ponto P pelo vortice

elementar yds é:

dp=-12 (3.36)

Portanto, o potencial de velocidades em P devido a cortina de voértices inteira de a

até b é:

o(x,2)= —i [oras (3.37)

A eq. (3.35) é particularmente util na teoria classica de aerofSlios delgados,
enquanto a eq. (3.37) é importante para o método numérico dos painéis de vortices.
Também podemos calcular a circulagfio em torno de uma cortina de vdrtices pela

somatoria das intensidades dos vortices elementares:

r= [yds (3.38)

Numa cortina de vortices, hd uma descontinuidade da componente tangencial
da velocidade transversalmente a cortina, enquanto que a componente normal da
velocidade € constante. Essa mudanga na velocidade tangencial esta relacionada com

a intensidade da cortina. Considerando uma cortina de vortices como esbogado na
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Figura 3.7, definiremos um caminho retangular englobando a se¢do da cortina de
comprimento ds. As componentes das velocidades tangenciais ao topo e ao fundo
desse caminho retangular s30 u; e u,, respectivamente, e as componentes tangenciais
aos lados esquerdo e direito sdo v; e v, respectivamente. O topo e o fundo estfio

separados por uma distancia dn.

|

b v dn
i t I
VO T U |
| iy |
te- s >

Figura 3.7 - Descontinuidade da velocidade tangencial através da certina de vortices

A circulacdo calculada no circuito dado é:

I“:(u1 —uz)ds+(v1 —vz)dn (3.39)

No entanto, como a intensidade da cortina de vortices contida dentro do circuito é

yds, também temos:

T =yds (3.40)

Entdo, das eqgs. {3.39) e (3.40) e fazendo dn —> 0 (u; e u; tornam-se as componentes

tangenciais da velocidade imediatamente antes e depois da cortina), temos:

Y =u -, (3.41)

Ou seja, o salto local da velocidade tangencial transversalmente a cortina de vortices
¢ igual a intensidade local da cortina.

Para calcularmos, entdo, a sustentacdo sobre um aerofblio, substituimos sua
superficie por uma cortina de vrtices de intensidade variavel y(s), como mostrado na

Figura 3.8.
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5 Aerofdlio de forma e
cApesmIra arbitririos

Figura 3.8 - Substitui¢io da superficic de um aerofélio por uma cortina de vértices

Calculamos a variagio de ¥ como uma fungfo de s tal que o campo de velocidades
induzido pela cortina mais o campo uniforme de velocidade V., torne a superficie do
aerofolio uma linha de corrente do escoamento. Calculamos a circulagio total pela

eq. (3.38) e a sustentagio pelo teorema de Kutta-Joukowski:

L=p V.l (3.42)

O conceito da substituicdo da superficie do aerofdlio por uma cortina de
vortices € mais do que um artificio matemético, pois tem também significado fisico.
Em casos reais, a camada limite induz vorticidade substancial ao escoamento
proximo A parede, devido aos seus efeitos viscosos. Assim, essa abordagem é uma
maneira alternativa de modelar parte dos efeitos da viscosidade utilizando apenas
conceitos de escoamento potencial,

Se imaginarmos que o aerof6lio tenha sua espessura reduzida, de modo que as
porgGes da cortina de vortices nas faces superior e inferior quase coincidam,
podemos aproximar este aerofolio delgado por uma cortina distribuida ao longo da
linha média de cambagem, como mostrado na Figura 3.9. Os calculos entio sdo
feitos da mesma forma. A vantagem desta aproximagdo estd no fato de que ela
sempre leva a uma soluco analitica fechada, enquanto que a primeira, dependendo

da geometria em questdo, necessita de resolugio numérica.

Cortina de vortices na
Littha srédia de camibagem
Voo (-\ Voo
Aercfdlio delgada \.—-—‘-ﬁ 5

i)

Figura 3.9 - Aproximagiie para aerofdlio delgado
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3.4 A condicéo de Kufta

Matematicamente, existem infinitas escolhas de ' que solucionam o
escoamento potencial ao redor de um aerofolio. Mas como sabemos da experiéncia,
existe somente um valor do coeficiente de sustentacio para uma dada geometria,
num certo dngulo de ataque. Assim, precisamos de mais uma restri¢do, a fim de que
possamos calcular I de forma fisicamente plausivel.

Esta condi¢fo € a condi¢fio de Kutta, que pode ser resumida em trés itens:

1. Para um dado aerofolio 2 um dado angulo de ataque, o valor de I’ ao redor
do aerofolio é tal que o escoamento deixa o bordo de fuga de maneira
suave;

2. Se o angulo do bordo de fuga tem um valor finito, entdo o bordo de fuga ¢
um ponto de estagnacio;

3. Se o bordo de fuga é a jungio das faces inferior € superior de forma de
exatamente no bordo as faces sejam paralelas, entdo as velocidades do
fluido que deixam as faces superior e inferior sdo finitas e iguais em

magnitude e direcédo.

Caso a condicdo de Kutta ndo fosse satisfeita, pode-se mostrar que teriamos
velocidades infinitas proximas ao bordo de fuga, o que, obviamente, nfio acontece na
realidade. Aplicando as condicdes de Kutta e utilizando a form. (3.41), chegamos &

conclusfo de que a intensidade da cortina de vértices no bordo de fuga, y(BF), é nula.

3.5 Aplicacado dos dados de perfis a asas finitas

As caracteristicas aerodinimicas de uma asa finita s3o diferentes daquelas
referentes a perfis porque aparecem componentes do escoamento na direcdo da
envergadura, ou seja, o escoamento ¢ tridimensional. Isto fica mais claro ao
examinarmos a Figura 3.10. Nela percebemos que a diferenca de pressdes na face
superior e inferior da asa, que € responsavel pela geracdo de sustentagio, também faz

com que o fluido perto das bordas laterais da asa tenda a contornar as bordas. Como
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resultado, na face superior da asa, aparece geralmente uma componente do
escoamento na direcio da envergadura no sentido da raiz da asa, causando a
deformac@o das linhas de corrente neste sentido. Similarmente, na face inferior da
asa, ha geralmente uma componente de velocidade direcionada para a borda lateral,

causando a deformacfio das linhas de corrente neste sentido.

Linha de comrente na
superficie superior

|
o Linha de comrente ra superficic inferior

3 l
Vista !
Supsrior 4 ‘l!’
2]t
- Envergadura b
Baixa pressio
Vista
frontal o =
Alta pressio

Figura 3.10 - Asa finita

A tendéncia do escoamento a “vazar” pelas bordas laterais da asa tem um
outro efeito importante na aerodindmica da asa. Esse escoamento estabelece um
movimento helicoidal 4 jusante da asa, isto é, aparecem vdrtices de fuga (wingtip
vortex) em cada bordo lateral. Esses virtices estdo representados na Figura 3.11 e
ilustrados na Figura 3.12, onde se vé uma foto de um ensaio realizado num tinel de
vento com filamentos de fumaca. O efeito dos vortices de fuga correspondentes a
uma sustentacdio positiva ¢ induzir uma componente vertical para baixo da
velocidade na asa e atrds delas chamada de “downwash” (w). A magnitude desta

componente em qualquer segdo transversal é igual a soma dos efeitos de todos os
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vortices de fuga ao longo da envergadura inteira. E assumido que as caracteristicas
aerodindmicas da secdo em relagfo as linhas de corrente rotacionadas sdo as mesmas

que a se¢do teria no caso bidimensional,

E— =ik 3

Figura 3.12 - Vértices de fuga de uma asa retangular

A rotagfio do fluido efetivamente reduz o 4ngulo de ataque. Vamos redefinir
aqui o como sendo o dngulo de ataque geométrico. Na Figura 3.13, o vento relativo
local, que é gerado pela combinagdo do downwash com a corrente livre do
escoamento uniforme, estd inclinado em relagfio a diregio de V., por um angulo «,
chamado de &ngulo de ataque induzido. Desse modo, o dngulo de ataque real é o
angulo entre a linha de corda e o vento relativo local. Este dngulo é representado por
o na Figura 3.13 e € definido como angulo de ataque efetivo. De acordo com a

mesma figura temos a seguinte formulacio:
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a, =a—a, (3.43)

Visto que a velocidade vertical induzida pelos vortices de fuga é proporcional
ao coeficiente de sustentagdo, o efeito dos vortices de fuga ¢ reduzir a inclinagio da
curva de sustentagdo. A rotagio do escoamento também causa uma rotagio
correspondente no vetor de sustentagio, pois o vetor sustentagdo local esté alinhado
perpendicularmente ao vento relativo. Isto produz uma componente de for¢a na
diregdo de V.. A esta forca chamamos de arrasto induzido (D)) pela presenca de
downwash. Podemos para esta forca também definir um coeficiente de arrasto
induzido (Cp:), que varia com o quadrado do coeficiente de sustentagiio porque a

intensidade da rotacfo e a magnitude do vetor sustentagZo crescem simultaneamente.

Figura 3.13 - Modificagiio do dngulo de atague devido 20 downwash

O problema da estimacio do downwash em cada ponto torna-se dificil na
medida em que esta relacionada com a sustentagfio e com a forma do plano da asa.
Para uma distribuicio eliptica de sustentagdo, o downwash € constante entre as
extremidades da asa e o arrasto induzido é minimo quando comparado a outros casos
de distribui¢do de sustentagio.

Por fim, nata-se que o arrasto total numa asa subsdnica finita é a soma do
arrasto induzido D;, do arrasto de fricgdo Dy e do arrasto de pressdo D, devido a
separacio do escoamento. As duas Gltimas componentes referem-se a efeitos

viscosos e sua soma é o de arrasto de perfil ¢z Assim, podemos escrever:
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D.+D
c, =L —% (3.44)
9.8
e o coeficiente de arrasto induzido:
D,
Cpi=—2 (3.45)
9.5
Assim, o coeficiente de arrasto total para uma asa finita pode ser reesctito:
Cp=c,+C,, (3.46)

Outra caracteristica importante das asas € a raz80 de aspecto (“aspect ratio™).
Este pardametro € definido como a razdio entre o quadrado da envergadura e a 4rea da
asa (bZ/S), o que se reduz a razdo entre a envergadura e a corda no caso de uma asa
retangular. Ensaios em tinel de vento mostram que as taxas de mudanca dos
coeficientes de arrasto e sustentagdo com o angulo de ataque sfio bastante afetadas
pela razdo de aspecto do modelo. Observa-se que asas com uma grande razéio de
aspecto, quando comparadas com asas com razdo de aspecto baixa, tem curvas de
sustentacdo de maior inclinagio e menores coeficientes de arrasto para altos
coeficientes de sustentagdo. As asas de diferentes razdes de aspecto apresentam o
mesmo angulo de ataque para sustentacdo nula, mas a inclinagio da curva aumenta
progressivamente com o crescimento da raziio de aspecto. Um comportamento
semethante se observa em relagdio aos coeficientes de arrasto. Todos os modelos de
mesmo perfil, mas com razdes de aspecto diferentes mostraram mesmo coeficiente
de arrasto para uma sustentacio nula, porém reduces significativas ocorrem para
altos coeficientes de sustentagdo com o crescimento da razio de aspecto.

Essas observagbes levaram ao desenvolvimento da teoria de asas de
Lanchester-Prandtl. Esta teoria mostra que, para asas que tem uma distribuicdo
eliptica de sustentagio na direcio da envergadura, as seguintes expressdes
relacionam os coeficientes de arrasto e os dngulos de ataque como fingdes do angulo

de aspecto para coeficientes de sustentagiio constantes:
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' Clf(1 1
C, =Co+—+|——— 3.47
»=Co E[A, A] (3.47)
C,(1 1
"=t ——— 3.48
o a+ar(A’ AJ (3.48)

onde Cp” e a” correspondem, respectivamente, ac coeficiente de arrasto e
angulo de atague (em radianos) de uma asa de razfio de aspecto A’. Essas correlagbes
possibilitam a predicio de caracteristicas de asas com uma precisio bastante
consideravel para aplica¢cSes aeronauticas, a partir de experimentos com uma asa de
mesmo perfil, mas com razdo de aspecto qualquer.

As eqs. (3.47) e (3.48) podem ser simplificadas com a introducio do conceito
de razdo de aspecto infinita. Se cq e @, indicam o coeficiente de arrasto ¢ o dngulo de
ataque de uma asa com razio de aspecto infinita, as caracteristicas de uma asa

eliptica com razdo de aspecto A podem ser expressas por:

2
C,=c¢,+ & (3.49)
a=a +& (3.50)
* mA

Uma asa de razdo de aspecto infinita teria 0 mesmo perfil de escoamento em
todos os planos perpendiculares 3 envergadura. Em outras palavras, nio haveria
componentes de velocidade na direcdo da envergadura, e 0 escoamento ao redor do
perfil seria bidimensional. As caracteristicas de uma asa de razdo de aspecto infinita
sdo chamadas de caracteristicas do perfil. Estas estio intrinsecamente relacionadas
com a geometria da se¢do transversal, ao passo que as caracteristicas da asa sdo
fortemente afetadas pela forma do plano da asa. O estudo detalhado das asas pode ser
bastante simplificado pelo conceito de caracteristicas do perfil porque a teoria de
asas disponibiliza um método para a obten¢do das propriedades de asas com plano de
forma arbitraria a partir da soma das caracteristicas das se¢Ges componentes.

A mais simples teoria tridimensional de asas é a baseada no conceito de linha
de sustentagdo. Nesta teoria, a asa é substituida por uma linha reta. A circula¢io ao

redor da asa associada com a sustentagdo é substituida por um filamento de vortices,
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que se localiza ao longo da linha reta e, para cada ponto dela, a intensidade do
vortice é proporcional 3 intensidade local da sustentagdo. De acordo com o teorema
de Helmholtz, um filamento de vortices ndo pode terminar no fluido. A variagio da
intensidade dos vortices ao longo da linha reta € entfo considerado o resultado da
superposicdo de varios vortices em forma de ferradura. As porgdes dos vortices que
estdio ao longo da envergadura sdo chamadas de vdrtices acoplados. As porgdes dos

vortices que se estendem 3 jusante indefinidamente sdo chamados de vértices livres.
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4 O MODELO DE ESCOAMENTO INVISCIDO

A analise de escoamentos inviscidos desconsidera o efeito da viscosidade no
escoamento e € apropriada para aplicagbes de alto mimero de Reynolds, onde as
forgas de inércia tendem a dominar as forgas viscosas, como por exemplo a andlise
aerodindmica de alguns projéteis de ala velocidade. Além disso, uma analise
inviscida d& uma estimativa répida das forcas primarias agindo sobre o corpo. Como
em engenharia aerondutica a forma do corpo € modificada para maximizar a
sustentacdo e minimizar o arrasto, pode-se fazer primeiramente uma primeira
aproximacio atraves da andlise inviscida e depois incluir os efeitos da viscosidade e
de turbuléncia nas forcas, a fim de se realizar uma andlise mais profunda do
problema. Os resultados bidimensionais apresentados congistem em simulagdes de
escoamentos inviscidos e incompressiveis, sendo que essa segunda caracteristica se
justifica pelo baixo nimero de Mach.

As equagbes para o escoamento inviscido sdio chamadas de equacSes de
Euler. Essas equagdes sdo obtidas das equagdes de Navier-Stokes, negligenciando
todas as tensGes cisalhantes € os termos de condugdo de calor. Como ¢é sabido da
andlise de¢ Prandtl da camada limite, esta € uma aproximagdo valida para
escoamentos em altos niumeros de Reynolds fora das regides viscosas que se
desenvolvem na vizinhanca de superficies solidas. Esta aproximacdo introduz uma
mudanca drastica na formulacdo matematica, j4 que o sistema de equagdes
diferenciais parciais que descreve escoamentos viscosos € de segunda ordem,
enquanto que para o modelo inviscido o sistema é de primeira ordem.

A equacio de conservacdo de massa é a mesma do escoamento laminar, mas
as equagdes de conservacio de momento e energia sfo simplificadas devido a
auséncia de difusio molecular.

A equagfio de conservagdo de massa, ou equacio da continuidade, pode ser

escrita como:

a—p+———a(p“")=sm “.1)
o ox

i
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p = densidade do ar
t = tempo
u; = velocidade na direco i

Sm = termo fonte de massa

A eq. (4.1) é a forma geral da conservacdo de massa e é valida tanto para
escoamentos compressiveis como para incompressiveis. O termo de fonte S.
representa a massa adicionada a fase continua a partir de uma segunda fase dispersa
(por exemplo, devido & vaporizagéic de gotas de liquido) e quaisquer outras fontes
definidas no problema.

A conservacdo do momento na dire¢fio i pode ser descrita por:

a(pu. ) a(pu,uJ ) 6p
iE8 _—__+p T+ F 4.2

J H

onde p € a pressdo estatica e pg; e Fi s&o as forgas gravitacionais e as forgas externas
na direcéo i, respectivamente.

A conservagio de energia (E) é descrita por:

o ) hJ,
5(pE)+ a(ui(PE+P)) —_ [ s J+S (4.3)
ot ox, ox, ’ .

1 H

h; = entalpia especifica da espécie j
J; = fluxo de massa da espécie j

Sy = termo fonte de entalpia

Neste trabalho, num primeirc momento foram desconsiderados os efeitos de
temperatura, por isso esta equagdo ndo € usada e os modelos referentes & energia
foram desabilitados nas simulac¢Ges.

O escoamento incompressivel de fluidos inviscidos € um exemplo de
problema de equilibrio. Problemas deste tipo sfo aqueles nos quais a solugio de uma

dada equacdo diferencial parcial é requerida num dominio fechado submetido a um
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conjunto de condigdes de contorno prescritas. A solu¢do da equacdo diferencial
parcial em todos os pontos do dominio depende das condi¢des de contorno prescritas
em todos os pontos da fronteira. Materaticamente, problemas de equilibrio sio

governados por equagdes diferenciais parciais elipticas, que serdio explicadas adiante.
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5 O METODO DOS VOLUMES FINITOS

O método dos volumes finitos é um método numérico para a resolugfo das
equacdes que regem um escoamento e também é chamado de discretizagdo em
volumes de conirole. Este algoritmo comegou a ser utilizado em problemas de
mecénica dos fluidos computacional na década de 60, se destacando em relagéo aos
demais métodos por possibilitar a modificagdo da forma e localizagdo dos volumes
de controle associados com um ponto da malha.

O método parte da geragdo de uma malha na regido que se quer estudar. Cada
nd desta malha é envolvido por um pequeno volume, que sfio denominados volumes
de controle. Esses volumes nédo se interceptam e neles se faz um estudo das equagbes
diferenciais que regem o fenémeno que sera estudado, como, por exemplo,
transferéncia de calor ou um escoamento. Nessas equagdes aplicamos a identidade
com a expansdo de Taylor e verificamos que as equagdes resultantes sdo consistentes
com o balango de calor e massa. A vantagem desse tipo de abordagem é a facilidade
no entendimento e a facilidade na interpretacéo fisica. A equagfo diferencial € entdo
mtegrada em cada volume de controle. Para cada volume enmtfo é definida uma
fungio de ¢, que é o pardmetro que se quer determinar, em relagdo ao tempo e
espaco.

Uma caracteristica interessante deste método é que a solugdo garante a
conservacio integral de massa, momento e energia em um volume de controle €, por
conseqiiéncia, em um conjunto deles, seja qual for 0 mimero de pontos em questfo.

E interessante observar as diferencas do método dos volumes finitos (MVF)
com outros métodos numéricos mais comuns. O método dos elementos finitos (MEF)
encontra solugdes aproximadas para todos os pontos da regifio em questio, enquanto
o método das diferencas finitas (MDF) encontra valores exatos para os nés da matha,
mas ndo faz nenhuma consideragdo sobre pontos da regifio que ndo sdo nos,
aproximando-se do que € observado em ensaios em laboratério, onde propriedades
sdo medidas apenas em alguns pontos. O MVF utiliza o mesmo tipo de abordagem
que o0 MDF, porém entre os pontos da malha € feita uma interpolagdo para que se
tenha uma medida aproximada do valor das propriedades dos pontos que ndo sio

nos.
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Problemas de mecanica dos fluidos so, via de regra, modelados por sistemas
de equacGes ndo lineares, resolvidos em geral de forma seqiiencial, onde
acoplamentos delicados estdo presentes. Para este tipo de formulagdo, ¢ muito dificil
provar matematicamente que uma aproximacio numérica 4 estavel e convergente.
Por isso, s@o estabelecidas duas outras condicbes que, juntas, sdo necessdrias e
suficientes para que a solugdio seja convergente. Sdo elas a consisténcia e
estabilidade.

Um dos requisitos fundamentais de uma aproximacio numérica é que ela
reproduza a equagdo diferencial quando os tamanhos da malha espacial e temporal
tendam a zero. Isto €, os erros de truncamento devem tender a zero quando a matha
tender a um infinito nimero de pontos. A aproximag¢io numérica que possuir essa
caracteristica € dita consistente. Todo modelo numérico desenvolvido a partir das
equacOes na forma conservativa usando volumes finitos € consistente, como sera
visto adiante.

Outra caracteristica importante desejada € que a solugfio numérica obtida seja
a solu¢do exata das equagdes discretizadas, ou seja, tenha estabilidade. Aqui,
diversos fatores interferem, tais como erros de arredondamento de maquina, que véio
se multiplicando e podem instabilizar a solugio; dificuldades de tratamentos de
acoplamentos enire as variaveis, fazendo com que algumas varidveis evoluam mais
rapidamente que outras, provocando instabilidades, etc. A questdo de estabilidade € o
mais sério problema na obtencfio da solucio numérica, exatamente pela falta de
conhecimento das caracteristicas matematicas das aproximagdes.

Para atender o requisito de consisténcia, o método dos volumes finitos baseia-
se em quatro regras bdsicas, que devem ser obedecidas pelas equagdes de

discretizagdo, a fim de prover realismo fisico e balango completo:

e Regra 1. Consisténcia nas faces do volume de controle.

Quando uma face € comum a dois volumes de controle, o fluxo através dela
deve ser representada pela mesma expressdo nas equagdes de discretizagio de

ambos.
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o Regra 2: Coeficientes positivos.

Se uma varidvel de um né vizinho aumenta, a do proprio né deve aumentar
também (e ndo diminuir). Esta regra garante a continuidade das fungdes analisadas e

do meio material.

e  Regra 3: Linearizacdo negativa do termo de fonte.

Se houver um termo de fonte dentro da equagio diferencial, e ele depender da

variavel em questdo, esta dependéncia depois da linearizagdo deve ser do tipo:

$=8.+8,T, (5.1)

sendo S o termo de fonte médio e Tp a wvariavel dependente, com Sp
obrigatoriamente nfio positivo. Caso contrario, o sistema apresentaria uma espécie de
realimentacdo positiva, isto €, pensando em transferéncia de calor, quanto maior a
temperatura do elemento mais calor é gerado. Isto ¢é fisicamente irreal e

matematicamente faz com que o método numérico divirja.

® Regra 4: Soma dos coeficientes vizinhos igual ao coeficiente do né.

A equacdo gerada pela integracdo apés a aplicacdo do MVF tem a seguinte
forma:

a7, =>.a,T, +b (5.2)

onde a, € o coeficiente do né, Ty, é o valor da variédvel dependente no nd, au, sdo 0s

coeficientes da vizinhanga, Ty, 0 valor da varidvel dependente na vizinhanga e b uma
variavel que inclui o termo de fonte. A regra em questdo diz que a, = Zam,, . Isto

tem que ser verificado para que a equagfo encontrada vatha para um valor T e

também para um valor T + ¢, onde ¢ é uma constante.
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ApoOs a aplicagdo do método nas equagdes diferenciais, recai-se num sistema
de equagdes algébricas linear, que pode ser resolvido por métodos iterativos (Gauss-
Seidel, sobre-relaxagdo, subrelaxacio) ou eliminacdo de Gauss. No que diz respeito &
metodologia de aplicaggo do método, 0 MVF se assemeitha muito ao MEF com
fungéo peso iguala 1.

Os volumes de controle sio definidos usando-se um esquema de
armazenamento nio escalonado, como mostrado na figura abaixo. Desse modo, todas
as varidveis sdo armazenadas no centro da célula do volume de controle ¢ 0 mesmo
volume de controle ¢ utilizado para a integragio de todas as equagBes de

conservagio.

J-ésima linha
4 . 4
Né (i, 1)
X
Local <&
ArMAZENGICITY (I~ 1) ésima
—$ & Hnha
(1~ 1) —¢ésima I - ésima
limtha linka

Figura 5.1 — Esquema de armazenamento no volume de controle.

A integragdo das equacdes diferenciais serd mostrada para um conjunto de
equagdes no caso unidimensional, sendo que estas podem ser facilmente estendidas
para o caso bidimensional ou tridimensional. Sejam as equacgdes diferenciais para
continuidade e conservaglio de momento em regime permanente, desprezando-se a

forga gravitacional e sem termos de fonte, que é o caso do presente estudo:

opu) _
200 (5.3)
Aown) _ %, p (5.4)
Ox ox

Essas equacdes podem ser integradas no volume de controle empregando-se o

Teorema da Divergéncia:
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j,a(ai:‘)drf = _L pudA (5.5)

A integracdo das eqgs. (5.3) e (5.4) resuita no seguinte:

J,—J, =0 (5.6)
J,ou,~J, -u,=p, —p, A+ F-AV (5.7)

As egs. (5.6) e (5.7) sdo equacdes algébricas que podem ser resolvidas dado
que as variaveis indeterminadas u e p sdo interpoladas de uma maneira que relaciona
seus valores nas faces do volume de controle aos valores no centro do volume. O

procedimento de discretiza¢do se baseia no esquema ilustrado na figura abaixo:

W
®

@
—
@i

Figura 5.2 — Esquema dos volumes de controle para discretizacio.

A solugfio das equacdes expressas acima requer o calculo da pressdo nas faces
do volume de controle (p. e pu), que se determine ¢ fluxo nas faces (J. e Ju) € a
interpolagdo para relacionar os valores nas faces com o valor da incognita # com os
valores nos centros dos volumes de controle.

O fluxo nas faces sfio obtidos de tal forma que as velocidades na face
obedecem a um balango médio do momento. Ja as pressdes nas faces sdo obtidas de
tal forma que as velocidades armazenadas no ceniro das células obedece ao balango

de massa.

5.1 Métodos de resolucao

Dentro do método dos volumes finitos pode-se escolher dois métodos de

resolucdo, o segregado e o acoplado. O processo de discretizagio € idéntico para os
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dois, porém a abordagem usada para linearizar e resolver as equagdes discretizadas é

diferente.

Segregada.

As equagBes sdo resolvidas separadamente e em seqiiénecia. Por que as
equagdes governantes sdo ndo-lineares e acopladas, sdo necessérias iteragdes do ciclo
de resoluglo para que uma soluglio convergente seja encontrada. Cada iteragdo

consiste nos passos ilustrados na Figura 5.3:

w Atualiza propriedades

f

Resolve equagiies de momente.

k4 :
Resolve equacio de continuidade,

Atualiza pressio e fluxo de massa nas faces.

r

Resolve eguac@es de eneryia, espécies,
turbuléncia e outras grandezas escalares.

L
Convergéncia 7

Figura 5.3 — Passos da iteraciio para a resolugio segregada.

Para utilizar este método fazem-se necessdrios célculos adicionais para
interpolagdo de pressio e acoplamento pressio velocidade. Os métodos de
acoplamento pressdo-velocidade s@o SIMPLE e SIMPLEC para regimes
permanentes e PISO para transitérios. A interpolaciio de pressdo pode ser do tipo
linear, de segunda ordem, ponderada por forgas de corpo, e PRESTO (PREssure
STaggering Option).

Por tltimo, vale ressaltar que € possivel ajustar os fatores de sob-relaxagio.

Acoplada:
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As equagbes de continuidade, momento, energia e transporte de espécies sdo
resolvidas simultaneamente, sendo que as duas Gltimas podem ndo estar presentes,
conforme a modelagem do problema. Equacdes para grandezas adicionais sdio

resolvidas segiiencialmente.

—| Atualiza propriedades.

l

Resolve equagies de eontinvidade, momento,
energia e espécies shnultaneamente.

l

Resolve equacies de turbuléncia e outros escalares.

'

(‘ Convergéncia? Parar

Figura 5.4 — Passos das iteracdes da resolucdio acoplada.

Para este método de resolugdio podemos ajustar o niimero de Courant, que

controla a discretizacdo no tempo para resolugio acoplada.

Voltando ao caso geral, estdo disponiveis no sofiware a ser utilizado quatro

esquemas de discretizagdo:

- Primeira ordem (escoamento alinhado com a malha),
- segunda ordem (escoamentos complexos),
- Power Law (mesma acuracia do esquema de primeira ordem),

- QUICK (escoamentos rotativos com malbas quadrilaterais e hexaedrais).

Para a linearizagdo na resolugo acoplada, os métodos implicito e explicito

podem ser utilizados. No método implicito, os valores dos nos vizinhos que sfo
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conhecidos e que nio sdo conhecidos sdo utilizados para a formulagio de um sistema
de equagdes. No método explicito, o valor de uma grandeza para determinado no ¢
calculado utilizando somente os valores da mesma grandeza para nos vizinhos onde

o valor e conhecido.
5.2 Discretizacdo das equacbes

A discretizagdo das equagdes governantes pode ser ilustrada facilmente
considerando uma equagdo de conservagdo para regime permanente de uma
quantidade escalar ¢. Esta equagdo estd escrita adiante na sua forma integral, para um

volume de controle I arbitrario:

ogv-dA=dT,Vé-dA+ £S¢dV (5.8)

p = densidade

v = vetor velocidade

A = vetor 4rea da superficie

I’y = coeficiente de difusio para ¢
V¢ = gradiente de ¢

S4 = fonte de ¢ por unidade de volume

A eq. (5.8) ¢ aplicada para cada volume de controle no dominio
computacional. A célula triangular bidimensional mostrada na Figura 5.5 é um
exemplo de volume de controle. A discretizagdio da eq. (5.8) numa dada célula

resulta em:

N faces N faces
2.4, = 3 T,(V9), 4, +5V (5.9)
7 7

Nfices = nimero de faces da célula
¢r= valor de ¢ convectado através da face f

pr= fluxo de massa através da face
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Ar= éarea da face f
(V¢), = magnitude de V¢ normal 3 face f
V = volume da célula

Figura 5.5 — Volume de controle utilizado para ilustrar a discretizagio da equagiio de transporte
de uma grandeza escalar,

O sofiware utilizado, FLUENT, armazena valores discretos do escalar ¢ nos
centros das células (c0 e ¢/ na Figura 5.5), de acordo com um arranjo que chamamos
de co-localizado. No entanto, os valores de face ¢y fazem parte dos termos de
convecgdo na eq. (5.9) e precisam ser interpolados dos valores dos centros. Isto é
conseguido utilizando esquemas upwind.

Este tipo de esquema significa que ¢y é derivada de quantidades da célula a
montante, com relagdo a velocidade normal na face. FLUENT disponibiliza quatro

esquemas upwind. Sdo eles:

¢ Ubpwind de primeira ordem:

Quando este esquema é selecionado, as quantidades nas faces das células sdo
determinadas através da assungo de que os valores de qualquer grandeza nos centros
representam um valor médio que pode ser tomado na célula inteira. Assim, 0s valores

nas faces sdo idénticos aos valores nos centros das células & montante dessas faces.

e  Power Law:
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Este esquema interpola ¢r usando a soluglio exata para a equagdo de

convecgdo-difusdo unidimensional:

0 (oue)=2ro
o loud)=— T~ (5.10)

onde I' e pu sdo constantes no intervalo dx. A eq. (5.10) pode ser integrada,

resultando na seguinte expressdo que relaciona ¢ com x:

x
¢(x)_¢|x:0 ) exp(Pe L] -1

= (5.11)
8., 4., exp(Pe)-1
onde Pe € o mimero de Peclet, dado pela expressio:
pe=PL (5.12)
r

A variaciio de ¢(x) entre x=0 e x=L estd mostrada na Figura 5.6 para uma
faixa de niimeros de Peclet. Vé-se nesta figura que, para Pe elevado, o valor de ¢ em
x=L/2 ¢ aproximadamente igual ac valor na célula & montante. Isto indica que
quando o fendmeno estudado ¢ dominado pela convecgdio, a interpolagdo resultante é
equivalente ao esquema upwind de primeira ordem.

FLUENT utiliza a eq. (5.11) num formato de lei de poténcias equivalente

para interpolar os valores nas faces.
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Figura 5.6 — Variaciio de ¢ entre x=0 ¢ x=L.

o Upwind de segunda ordem.

Quando este esquema ¢ utilizado, as quantidades nas faces das células sfo
computadas utilizando-se uma reconstru¢o multidimensional linear. Nesta
abordagem, uma precisfio de ordem mais elevada é conseguida nas faces das células
através da expansdio em séric de Taylor dos valores armazenados (valores centrais)
em forno do centro de massa da célula. Por conseguinte, ¢y ¢ calculado segundo a

expressio:

¢, =p+Ve-As (5.13)

onde ¢ e V¢ sdo o valor da grandeza escalar e seu gradiente no centro da célula a
montante, respectivamente, e As ¢ o vetor deslocamento do baricentro da célula para
0 baricentro da face. Esta formulagio requer a determinagio do gradiente V¢ em
cada célula. Este gradiente ¢ calculado utilizando-se o teorema do divergente, cuja

forma discreta € escrita da seguinte maneira:
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1 Njaces

Vé=2 > 0,A (5.14)
f

Aqui o valor (Z; 7 € igual 4 média de ¢ das duas células adjacentes & face. Por fim,

limita-se o valor de V¢ de modo que o valor de ¢ycalculado nfio ultrapasse os valores

minimo e maximo calculados para os centros.

Os termos de difiusio na eq. (5.9) sdo discretizados pelo esquema de

diferengas centrais ¢ por isso tem sempre uma precisdo de segunda ordem.

A equag@o de transporte de grandeza escalar (eq. (5.9)) tem como incégnitas
o valor de ¢ no centro da célula assim como nas células vizinhas. Esta equacgio
geralmente serd nio-linear em relagdo a estas varidveis. Uma forma linearizada da

eq. (3.9) pode ser escrita da seguinte forma:
anb . Zaviz¢vfz + b (5 15)

onde o indice viz se refere as células vizinhas, e ar e a,;; sdo os coeficientes
linearizados de ¢ € ¢,

O namero de vizinhos para cada célula depende da topologia da matha, mas
serd geralmente igual ao mimero de faces do contorno da célula, sendo que as células
de fronteira sfio as exce¢des a essa regra.

EquagBes desse tipo sdo escritas para cada célula da malha. Isto resulta num
conjunto de equagles algébricas com uma matriz de coeficientes esparsa. Para
equacGes escalares, FLUENT resolve o sistema linear resultante usando o algoritmo
iterativo de Gauss-Seidel em conjunto com um método algébrico multimalha
(AMG), que sera descrito adiante,

Por causa da ndo-linearidade das equagGes, é necessério controlar a variagdo
de ¢. Este controle ¢ tipicamente feito através de subrelaxagdo, que reduz a mudanca

de ¢ produzida durante cada iteragdo. O novo valor da varidvel ¢ em uma célula
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depende do valor da iteragdo anterior, ¢z, 2 mudanga computada em ¢, Ag, e o fator

de subrelaxacgdo, ¢, como segue:

¢ =9,, +al (5.16)

Do mesmo modo que as grandezas escalares que s3o convectadas e
difundidas, as pressGes nas faces também precisam ser interpoladas dos valores

centrais. Seguem os esquemas de interpolag8o de pressdo utilizados pelo FLUENT:

= Esquema Padrdo:

Neste esquema, os valores de pressdo sdo interpolados nas faces usando-se os
coeficientes da equagiio de momento. Este procedimento da bons resultados na
medida em que a variaglio de pressio entre os centros das células seja suave. Se
existem descontinuidades ou grandes gradientes nos termos de fonte de momento
entre os volumes de controle, o perfil de pressio tem um alto gradiente na face da
célula, e ndo pode ser interpolado utilizando-se este esquema, pois sen uso levaria ao
aparecimento de picos e vales de velocidade fisicamente irreais.

Uma fonte de erro importante é o fato de que FLUENT assume que o
gradiente normal de pressio na parede é nulo. Isto € valido para camadas limite, mas
ndo na presenga de forcas de corpo ou curvatura. A fatha do célculo nesse caso é
manifestada através do aparecimento de vetores de velocidades com componente na

dire¢do normal a parede.

s Linear:

Este esquema calcula a press@o na face do elemento como sendo a média dos

valores de pressdo nos centros das células adjacentes.

»  Segunda Ordem:
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Este esquema reconstréi a pressio utilizando a mesma formulagio
apresentada para a interpolagdo do tipo upwind de segunda ordem para termos
convectivos. E um método mais acurado do que o0s esquemas anteriores, mas pode
apresentar problemas de convergéncia se utilizado no comego dos calculos ou com
uma malha disforme.,

= Ponderacdo pela forca de corpo:

Este esquema computa as pressdes nas faces admitindo que o gradiente
normal da diferenca entre a pressdo e a forga de corpo é constante. Funciona bem se

as forcas de corpo sfo conhecidas a priori nas equacdes de momento.

» PRESTO (PREssure Staggering Option):

Utiliza um balango discreto de continuidade para um volume de controle na
face para computar a pressiio desta mesma face. O procedimento é similar aos

esquemas de malha escalonada utilizados para casos estruturados.
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6 SIMULACOES BIDIMENSIONAIS

6.1 Condicbes gerais das simulacdes

Foram feitas diversas simulacGes computacionais utilizando o modelo de
Euler (inviscido) em regime permanente desprezando-se os efeitos gravitacionais, ja
apresentado no capitulo 4. Os resultados obtidos foram comparados com dados
experimentais retirados da referéncia [2]. Os modelos de aerofdlio utilizados foram
NACA 0012, NACA 2410, NACA 4421, NACA 0006, NACA 2424 ¢ NACA 4412,
todos com corda unitaria. Estes aerofolios foram escothidos por apresentar diferentes
valores de espessura e cambagem, fazendo assim com que fosse possivel fazer uma
anilise de sensibilidade do método numérico. As coordenadas dos folios foram
gerados por uma rotina JAVA, disponive] para execucfio on-line na referéncia (site)
[12]. Estas coordenadas foram transferidas para um arquivo texto e posteriormente
executou-se uma rotina em C, elaborada pelo autor deste trabalho, para transformar
0s pontos em um arquivo journal, que é lido e compilado pelo gerador de malhas
GAMBIT, gerando os pontos e arestas do perfil.

Optou-se por utilizar o modelo de resolugiio segregada com formulagdo
implicita, visto que este foi 0 método que forneceu os melhores resultados e de
maneira mais rapida em algumas simulagdes preliminares feitas para que essa
decisdio fosse tomada antes que se procedesse as simulagdes de fato. Além disso,
foram desprezados os termos de energia, ja que sua inclusdio nfio trazia modificagio
alguma aos resultados obtidos.

As propriedades do escoamento utifizadas foram:

o Densidade do ar (p): 1,225 kg/m’ (constante)
e Velocidade ao longe (V) : 43,8 m/s

Para os valores de p e p foram utilizados os valores padrio do FLUENT. A
presséo local foi considerada a atmosférica ao nivel do mar (101325Pa). O valor para

V. foi escolhido de modo a fornecer um nimero de Reynolds igual a 3.10° (caso o
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modelo utilizado fosse viscoso, com p = 1,7894.10” kg/m.s), que era um dos casos
de experimento disponivel na referéncia utilizada. Utilizou-se o modelo de
escoamento incompressivel, visto que o niamero de Mach em relagdio 3 velocidade ao
longe € da ordem de 0,129, ou seja, menor do que 0,3 (subcritico).

Para todos os casos foi estabelecido um nimero méximo de 1500 iteragdes.
Os fatores de sub-relaxagfio foram utilizados 0,3 para pressdo e 0,7 para momento,
sendo que no caso nos quais a solugo ndo convergiu, foi tomado o resultado da
1500" iteragdo. A convergéncia € notavelmente mais dificil nos casos com dngulo de
ataque elevado, proximos da condigdo de estol.

A discretizacdo utilizada foi de primeira ordem para pressio e momento,
sendo que em alguns casos utilizou-se discretizagdo de segunda ordem também,
como teste. Todavia os resultados n#o apresentaram diferengas significativas, talvez
por se tratar de escoamento inviscido. O método de acoplamento pressio velocidade
utilizado foi o método SIMPLE.

Foram estabelecidos valores minimos e maximos para pressio absoluta de
85kPa e 115kPa respectivamente, com a finalidade de acelerar a convergéncia dos
resultados. O campo de escoamentos foi inicializado em todos os casos com as
condigdes do escoamento ao longe (V. = 43,8 m/s) e o critério de convergéncia foi
de 0,001 para continuidade e para as componentes x e y da velocidade. O coeficiente
de momento foi calculado tomando como pélo a coordenada correspondente a um
quarto da corda partindo-se do bordo de ataque, assim como est4 exposto nos valores

experimentais de referéncia.

Condicoes de contorno utilizadas:

e Entrada de velocidade: utilizada para definir a velocidade e propriedades
escalares do escoamento pela fronteira. As propriedades de estagnaciio do
escoamento ndo sdo fixadas, e sdo calculadas de forma a fornecer o valor
necessario para gerar a distribuicdo de velocidades prescrita. Esta
condicdo de contorno s6 & apropriada para casos de escoamento

incompressivel, pois ela permite que as condigSes de estagnagdo assumam
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qualquer valor, fazendo com que em casos de escoamento compressivel a

solugdo convirja para um resultado fisicamente irreal.

Saida de fluxo (Outflow): usada para modelar a saida do escoamento
quando os detathes da velocidade e pressdo nfio sdo conhecidos antes da
solugdo do campo de escoamento. Matematicamente, o software
FLUENT trata esta condi¢do de contorno através do estabelecimento de
uma difusdio de fluxo nula na dire¢io normal a fronteira para todas as
variaveis ¢ de uma corregdio no balango de massa total. A condicio de
difuséo de fluxo nula significa que as condigdes na superficie de saida sdo
extrapoladas do interior que elas nfo tém impacto sobre o escoamento a
montante. O procedimento de extrapolagio dessas variaveis é consistente
com a hipotese de escoamento completamente desenvolvido, ou seja,
quando os perfis das propriedades (velocidade, temperatura, etc.) ndo
mudam na direcdo do escoamento. Esta condigio nio é apropriada para
escoamentos compressiveis, porém, o numero de Mach envolvido nas
simulagSes adiante apresentadas é menor que 0,2, o que justifica o uso

desta condigido de contorno.

Parede: condicdo utilizada para delimitar a regifio ocupada pelo perfil
Como o escoamento € inviscido, incompressivel e os termos de energia
néo estdo sendo considerados, apenas uma condigio de fluxo nulo normal

a fronteira é imposta.

Simetria: FLUENT assume fluxo nulo de todas as quantidades através de
uma fronteira com condi¢iio de simetria. Ndo ha fluxo convectivo através
de um plano de simetria, portanto, a2 componente normal da velocidade ¢
zero. Néo ba difusdo de fluxo através de um plano de simetria, assim, os
gradientes normas de todas as varidveis do escoamento sio nulos. Esta
condicio foi usada para modelar as fronteiras paralelas a direcio da

velocidade ao longe.



71

A figura abaixo ilustra a localizacio das fronteiras com as respectivas

condigdes de contorno.
Simetria
Entrada
de
Valocidade
~— Pareda Smida
(perAll) de
Fluxe
Simetria

Figura 6.1 — Dominio ¢ condi¢es de contorno.

Por fim, 0 FLUENT também disponibiliza a funcionalidade de malha
adaptativa, que € o refinamento da malha de acordo com a geometria e os dados da
solug@o numérica. Foi feito um refinamento baseado no gradiente da magnitude de
velocidade utilizando o método “Hanging Node”, que consiste no estabelecimento de
novos nos nos pontos médios das arestas dos elementos selecionados para o
refinamento. Assim, um elemento na malha original d4 origem a quatro na malha
refinada, como ilustrado na figura abaixo. Todos os casos foram simulados com a
malha original gerada pelo programa GAMBIT e com a malha refinada,

AN

Elemento Criginal Elemento Refinado

Figura 6.2 — Esquema de refinamento hanging node para elemento triangular.
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Os parametros que foram observados nas simulagbes foram Cy, e Cy. Apesar
do software utilizado também fornecer valores para Cp, decidiu-se por ndo fazer uso
desses valores, ja que se sabe de antemdio que o modelo de Euler, por ndo considerar
esforgos viscosos, ndo gera bons resultados para esse parimetro. Além dos valores
desses coeficientes, estdio plotadas distribuicSes de pressdo estatica, pressio total e

magnitude de velocidade e vetores de velocidade para alguns casos.
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6.2 Resultados para perfil NACA 0012

O primeiro perfil simulado é um perfil NACA 0012, que € simétrico e tem
espessura maxima igual a 12% da corda, que é unitaria. O bordo de ataque do perfil
esta localizado na origem do sistema de coordenadas. A malha gerada se compreende
0 dominio que entre os pontos de abscissa -10 e 40 e o0s pontos de ordenada -20 e 20.
A mostra uma visdo geral da malha e a o detalhe da malha em torno do perfil, com 6°
de angulo de ataque.

Figura 6.3 — Visiio geral da malha para NACA 0012 com o=0°.
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ados os valores para os coeficientes de

t
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to fornecidos pelo sofiware FLUENT. O indice sim se refere a
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Figura 6.4 — Detalhe da makha em volta do perfil NACA 0012 com a=6°.
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Abaixo podemos ver a malha resultante do refinamento baseado nos

Para todas as malhas bidimensionais geradas nesse trabalho, nas fronteiras do

Na tabela a seguir, est

2
oA
17

Figura 6.5 — Detalhe da malha refinada em volta do perfil NACA 0012 com a=6°.

A AVATATATATAVAY

NAVATAVAVANS AT ATATATAYATAYAVLY

gerados e somente eles sio os nés da interface solido-fluido. Os perfis foram gerados
com 49 pontos no extradorso e 49 pontos no intradorso, totalizando uma

dominio foi estabelecido um intervalo fixo entre nés igual a 1 e no perfil os pontos
gradientes de velocidade da solugdo obtida para a simulagdo com a malha original.

discretizagdo de 98 pontos.

sustentag
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simulagio com a malha original gerada pelo GAMBIT e o indice ref refere-se a

reiteragdo com a malha refinada.

Tabela 6.1 — Resultados para perfil NACA 0012,

| a(graus) i C.sim | Coref | Coexp | Cysim | Cyref [ Cyexp

=2 1 .020 -0,19 020 ! 0,00 -0,01 0,00
0 0,04 0,02 000 ! -0,01 -0,01 0,00
2 0,26 0,27 023 : -0,01 -0,01 0,00
4 : 0,47 0,48 044 : -0,01 -0,01 0,00
6 i 0,66 0,70 065 | -0,01 -0,01 0,00
8 i 0,77 0,84 089 i -0,01 0,00 0,00
10 | 084 0,92 1,10 | -0,01 0,00 0,00
12 ! 078 0,91 127 | -0,01 -0,01 0,00
14 © 075 0,75 143 : -0,03 -0,03 -0,01
16 : 074 0,73 1,55 : -0,05 -0,07 -0,05
18 i 086 0,80 095 : -0,11 -0,07 -0,06
20 i 067 0,75 087 i -0,06 -0,05 -

A seguir os resultados sdo apresentados de forma grafica;

C. para perfil NACA 0012

1,80 +— | ‘
1,60 + e ' r
1,40 - +2‘$‘ér?fiiﬁta. r . |
1,20 + —A—refinada |+ i
1,00 - {

a 0,80 _

O p60 ‘
0,40 -
0,20 [ !
0,00 |
0,20 | ! , |
-0,40 | ; B | |

3 0 5 10 15 20 25
angulo de ataque (graus)

Figura 6.6 — Coeficiente de sustentacdo em funcio do Angulo de ataque para perfil NACA 0012,
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Cw para perfil NACA 0012
0,02 , . ) -
0,00 - '
-0,02
02 -0,04 | !
0,06 —e—simulagio |
0,08 || i pementa
-0,10 [
0,12 . | | . | !
-5 0 5 10 15 20 25
angulo de ataque (graus)

Figura 6.7 — Coeficiente de momento em funcio do Angulo de atague para perfil NACA 0012,

Percebemos que para o Cp os resultados da simulagio tém uma boa
concordincia com 0s experimentais para dngulos de ataque pequenos (de até 6°).
Depois disso, as simulagfes tanto para malha original quanto para a malha refinada
apresentam sustentacfo inferior & experimental, sendo que para os dngulos de 8° e
10° a solugio refinada apresentou uma ligeira melhora. Era esperado que para
angulos de ataque proximos ao angulo de estol a solugiio obtida pela simulagdo fosse
irreal, todavia o descolamento das duas curvas se deu antes do esperado.

Ja para o Cwv a solugdo ndo refinada apresentou-se com tendéncia semelhante
a experimental, porém com valores deslocados para menos (erro sistematico). A
solugdo refinada fica oscilando entre os valores experimentais e a solucio ndo
refinada. Cabe observar que ja era esperado que o valor obtido do coeficiente de
momento divergisse do experimental, ja que as forgas viscosas tém também uma
influéncia nfo desprezivel sobre esse coeficiente.

A seguir estdo representados contornos de pressio e magnitude de velocidade

para trés dngulos de ataque.
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Figura 6.8 — Contornos de pressio estatica relativa para perfil NACA 0012 com a=0°. Valores

em Pa.

6.160 401
I 4.826 401
4470401
4.13a.01
2. 79+
3.450 401
3. 11a+01
2772401
2420401
208001

1.740.01

Figura 6.9 — Contornos de magnitude de velocidade para perfil NACA 0012 com o=0°. Valores

em nys.
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7.08e+01
Im
S.80e+01
5.20a.+01
4.700+01
4.90a+01
3510401
291e+01
2320401

1.72a401

1.13e401

Figura 6.10 — Contornos de magnitude de velocidade para perfil NACA 0012 com o=6°. Valores
em nys.

Figura 6.11 — Contornos de pressio estitica relativa para perfil NACA 0012 com a=6°. Valores
em FPa,




79

Figura 6.12 — Conternos de magnitude de velocidade para perfil NACA 0012 com a=16°,
Valores em m/s,

34382400

299a+08

—4.599.01

-1.06a40%

-1.666403

Figura 6.13 — Contornos de pressio estitica relativa para perfil NACA 0012 com a=16°. Valores
em Pa,
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Figura 6.14 — Valores do coeficiente de pressio ao longo do perfil NACA 0012 com o=16°,

Especificamente para as figuras referentes a a=16°, percebemos uma esteira
de baixas velocidades depois da asa. Essa esteira aparece, de forma menos obtusa,
desde 0=10°, quando as curvas de sustentagio comecam a divergir. Duas questdes
que ficam para trabathos fituros sdo por que esta esteira aparece, j4 que é utilizado
um modelo inviscido para a simulagio e porque as curvas comegam a divergir antes

do 4ngulo de estol.



81

6.3 Resultados para perfil NACA 2410

Este perfil foi o perfil mais esbelto dentre os simulados. Abaixo est3 ilustrada
a malha ao redor do perfil com um &ngulo de ataque de —6°.

A ATA S aVATAT S e A VAVAVARAVAYA A oy v o ATAYAY vy
: ‘Yﬁ%ﬂ%%ﬁ#ﬁ‘fﬂﬂmﬁﬂm“nsnm‘?&‘A
Y,

TN AYaY

“5‘[3#"'-';'_;}'#1#:##&'* ATAYAS v,
I#A":"‘mﬁk‘ N ERAD . %ﬁ%ﬁﬁ%ﬁiﬂﬂih"ﬁ“
- AAYAVAVAYANA Y v N v:fm#ﬁ#;xf::’i&g:::
T

Figura 6.15 — Detalhe da malha em volta do perfil NACA 2410 com o= -6°.

Da mesma forma que no perfil anterior, os resultados estdo apresentados na

forma de tabela e de forma grafica a seguir.

Tabela 6.2 — Resultados para perfil NACA 2410,

wl: — w 3 —m —nﬂ_“#
-8 037 -0,35 043 : -0,05 -0,06 -0,05
-4 -0,17 -0,17 -022 ; -0,06 -0,06 -0,05
-2 0,05 0,06 -0,02 i -0,06 -0,06 -0,05
0 0,28 0,29 020 | -0,06 -0,06 -0,05
2 ! 050 0,51 042 | -0,08 -0,07 -0,05
4 | 072 0,72 064 : -007 -0,06 -0,05
6 : 088 0,87 088 : -0,06 -0,06 -0,05
8 i 106 1,08 1,09 : -0,06 -0,06 -0,04
1 | 1,03 1,07 1,28 ; -0,05 -0,04 -0,04
12 i 1,07 1,05 146 | 0,00 -0,07 -0,04
14 1 091 1,03 1,56 | -0,05 -0,05 -0,04
1§ ! 088 0,98 164 | -0,06 -0,07 -0,07
18 : 093 0,84 115 : -0,12 -0,06 -0,12




C. para perfil NACA 2410
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Figura 6.16 — Coeficiente de sustentaciio em fanciio do dngulo de ataque para perfil NACA 2410.
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Figura 6.17 — Coeficiente de momento em fungio do dngulo de ataque para perfil NACA 2410,

As curvas de Cp apresentaram o mesmo comportamento do perfil NACA

0012, sendo que no presente caso a aderéncia entre as curvas deu-se desde a=-6° até

o=8°. Neste caso, podemos perceber que a simula¢do fornece resultados ligeiramente

maiores do que os resultados experimentais. Provavelmente isso é justificado pela
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presenca de forgas viscosas que geram componentes nio mulas na direiio vertical,
sentido para baixo, em perfis com cambagem. Isso faz com que a sustentaco no caso
real seja menor do que a calculada numericamente ou analiticamente utilizando-se
um modelo inviscido.

Em relagdo ao coeficiente de momento, pode-se dizer que cabe o mesmo tipo
de analise feita para o perfil NACA 0012 para os resuliados da malha ndo refinada.
Somente 0 ponto referente a a=12° apresentou-se fora da tendéncia. Os resultados
para malha refinada apresentaram-se piores, j4 que nfio ocorre uma queda no Cy
depois de 14° como era esperado ¢ antes disso os valores oscilam bastante.

Abaixo estdo plotados contornos de pressdio, magnitude de velocidade e

vetores de velocidade para trés dngulos de ataque distintos.

74328401
I 6750401
6 18640t

56ta4l1

5036401

4 460+

3890401

3326401

2 740401

2.17a401

1 806401

Figura 6,18 — Contornos de magnitude de velocidade para perfil NACA 2410 com a=6°,
Valores em m/s,
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5288402
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—2 BBe+02

B 980+02

-1 1ie+03

Figura 6.19 — Contornos de pressdo estitica relativa para perfil NACA 2410 com a—=6°, Valores
em Pa,
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-2 730402
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100000 (NN

1.36ei03
-1636408 '
1900403

217403

Figura 6.20 — Contornos de pressdo estitica relativa para perfil NACA 2410 com a=4°. Valores
em Pa.
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-6.55e+02
-1.178+03
-1.68e+03
-2 2§03
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-3.25e+03

-3.77e+03

4,282,003

Figura 6.21 - Contornos de pressio estitica relativa para perfil NACA 2410 com a=14°. Valores
em Pa,
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Figura 6.22 — Valores do coeficiente de pressio ao longo do perfil NACA 2410 com a=14°,
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7.73e401
| 6970401
6.20e+01
5430401
4660401
3.890401 -
3.130401
2360401

1.59e+01

8242400

5.63e-01

Figura 6.23 — Detalhe no bordo de faga dos vetores de velocidade coloridos de acordo com a
magnitede da velocidade para perfil NACA 2410 com a=14° (condi¢io de estol). Valores em
m/s.

E interessante observarmos na F igura 6.19 a distribuicdo de pressbes que gera
um coeficiente de sustentagio negativo, evidenciado principalmente no bordo de
ataque. Logo em seguida, observamos na Figura 6.20 uma situagdo oposta, porém,
devido a presenca da cambagem nfo mula, que faz com que o angulo de atague de
sustentacdo nula seja menor do que zero, nessa sitbacdio temos uma maior
distribuicdio de baixas pressdes na parte superior, fazendo com que a sustentagdo seja
maior do que simplesmente o oposto do valor obtido para um angulo de ataque
SIMEtrico.

Ja para as condigdes de alto dngulo de ataque, ilustradas aqui por vetores de
velocidade para a=14°, percebemos que ha a formacdo de uma esteira semelhante 2
que se observou para o perfil NACA 0012 em altos dngulos de ataque. Além disso,
fica também evidenciada uma bolha de recirculagiio em baixa velocidade préxima ao
bordo de fuga, no dorsc superior. Mais uma vez fica a questdio sobre o motivo do
aparecimento desse fendmeno, uma fez que para as condicdes de simulagio ndo se

previa uma situacdio como esta.
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6.4 Resultados para perfil NACA 4421

Os resultados obtidos para este perfil, que é consideravelmente mais espesso
que os outros dois testados, diferem bastante dos ja apresentados. Em primeiro lugar,
sua espessura mais elevada faz com que aparecam gradientes de velocidades em
pontos bem mais distantes do que nos casos anteriores. Essa caracteristica Jevou 2
necessidade de elaboragdo de malhas maiores, pois no ponto onde estava se fixando
uma condiggo de outflow o escoamento nfio se encontrava ainda completamente
desenvolvido. Assim, o que se fez foi gerar mathas semelhantes 2s anteriores, porém
com abscissa maxima em 80. Uma malha refinada para o caso de a=0° esti exposta
abaixo. E interessante notar que os elementos refinados correspondem a regibes com
alto gradiente de velocidade e observando a malha abaixo se nota que era premente a
necessidade de malhas maiores que as anteriores, a fim de que as condicGes de

contorno estabelecidas fossem fisicamente factiveis.

Figura 6.24 — Malha refinada para perfil NACA 4421 com a=0°.

Da mesma forma que nos dois itens anteriores, abaixo estio expostos os

resultados referentes aos coeficientes aerodindmicos na forma de tabela e graficos.




Tabela 6.3 — Resultados para perfil NACA 4421.
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a(graus): C.sim | C.ref | Coexp : Cysim | Guref | Cyexp
-6 ; -007 -0,06 024 ;| -0,11 -0,12 -0,09
4 i 012 0,13 004 i -0,11 -0,12 -0,09
2 ! 034 0,34 018 ! -0,12 -0,12 -0,08
@ ! 055 0,55 037 ! -0,12 -0,12 -0,08
20 077 0,76 056 : -0,12 0,12 -0,08
4 : 093 0,94 076 : -0,11 0,11 -0,08
6 i 1,16 1,16 093 ;| -0,12 -0,11 -0,07
8 i 132 1,34 1,10 i -0M -0,12 -0,07
10 | 1,46 1,50 1,23 i -0,11 -0,11 -0,06
12 | 156 1,66 1,32 | -0,09 -0,1 -0,06
14 | 1,58 1,60 1,32 ! -0,08 -0,07 -0,05
16 : 155 1,78 1,31 : -0,06 -0,08 -0,05
18 : 148 1,79 129 : -0,04 -0,06 -0,06
20 | 1,44 1,42 127 | -0,05 -0,05 -0,06
C. para perfil NACA 4421

2,00 T - T i

1,50 + - -

1,00 —&—simulagio 1 B ‘
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Figura 6.25 — Coeficiente de sustentagiio em fungiio do Aingulo de ataque para perfil NACA 4421,
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Cw para perfil NACA 4421
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Figura 6.26 - Coeficiente de momento em fungiio do ingulo de ataque para perfil NACA 4421.

Com relagfio a este perfil, podemos observar que para a sustenta¢Zo a curva
das simulacdes feitas com malha nfo refinada comporta-se de maneira bastante
similar & curva experimental, s6 que deslocada em relagio ao eixo das ordenadas de
um valor que varia entre 0,16 e 0,22. O mais interessante € observar que este
comportamento ¢ completamente diferente dos observados para os outros petfis, pois
a curva se mantém semelhante mesmo para dngulos de ataque elevados. Outra
caracteristica interessante ¢ a magnitude da diferenca entre os valores experimentais
¢ simulados, na regifio onde as curvas se comportam semelhantemente ao caso
experimental em todos os perfis, isto €, na regio de baixe a. Notamos que a
diferenca para o perfil NACA 4421 ¢ significativamente maior do que nos outros
dois casos. Como tentativa de se explicar este fendmeno, é colocada aqui a hip6tese
de que como o perfit 4421 é muito mais espesso que os outros, aqui os efeitos da
separagdo da camada limite sfo mais fortemente sentidos. Por isso, os valores
encontrados experimentalmente teriam discrepancias maiores em relagdo a valores
tedricos ou numéricos. Contudo, para confirmarmos esta hiptese seria necessario
efetuarmos simulagdes com perfis de espessura intermediaria, com o fim de
observarmos se essa diferenga cresce mesmo juntamente com a espessura. Por fim,
observamos que a solugfo refinada apresentou resultados piores que a solugiio
original.
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Com relagdo ao Cy, 0s resultados numéricos acompanham os experimentais a
menos de um erro sistemdtico negativo até angulos de ataque proximos de 10°,
quando a partir dai os valores simulados crescem mais rapidamente do que os valores
experimentais, chegando a cruzar a curva destes ultimos. Provavelmente, mais uma
vez, este comportamento se deve a viscosidade do fluido real que ndo foi considerada
no modelo utilizado. Uma observagio importante deve ser feita com relacdo do
comportamento da curva, pois nos outros dois casos 0 momento cafa para valores
grandes de o, enquanto que nesse caso, verifica-se um crescimento do momento na
regido de altos angulos de ataque.

A seguir estdo ilustradas distribuicdes de pressdo total, pressdo estatica,

magnitude de velocidade e vetores de velocidades para alguns casos simulados.

. 6142401
5.5%4+01

5 Q3e+01

4 47e4+

3 92e+

L 3382401
2 $la+1

2 2%+

1 70e+01

1 140401 (‘\
5 830400 G

Figura 6.27 — Contornos de magnitude de velocidade para perfil NACA 4421 com a=0°, Valores
em m/s,
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2 150401

I -B248:02
4700402
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—8.626402
1216403
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-1 940403
2192403

~2 449403

Figura 6.28 — Contornos de pressio estitica relativa para perfil NACA 4421 com a=0°. Valores
em Pa.
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Figura 6.29 — Contornos de pressdo estitica refativa para perfil NACA 4421 com =8°. Valores
em Pa.
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8878401
I 7.9%010
7 182+
6220401
534a+01
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2 B%a+1
1818+
9.26a+00

4.31e-01

Figura 6.30 — Vetores de velocidade coloridos de acordo com a magnitude da velocidade para
perfil NACA 4421 com a=20°. Valores em m/s.
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Figura 6.31 — Contornos de pressio estitica relativa para perfil NACA 4421 com o=20°. Valores
em Pa, [

Com relagaio 4 sustentagio, observamos que em angulos de ataque baixo, este
perfil apresenta uma distribui¢do de pressSes baixas em uma édrea maior do que nos
outros dois perfis simulados, o que justifica os valores de C;. maiores encontrados
para esse perfil nessa regifio, e que resultam num 4ngulo de sustentacfio nula menor.

Com o aumento do angulo de ataque, a relago entre as dreas submetidas & pressio
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baixa e as submetidas 4 pressfio alta ndo se altera muito, o que justifica a menor
inclinagdo da curva de sustentag@o gerada por esse perfil. Muito provavelmente este
efeito € gerado pela conjugagio de alta espessura e alta cambagem,

Para 4ngulos de ataque altos, verifica-se o aparecimento de uma esteira
similar aquelas que foram observadas para os dois casos. No entanto uma diferenca
fundamental existe nas proximidades do bordo de ataque. Para este perfil temos uma
distribuicdo de pressdes baixas no dorso superior numa area maior do que nos dois
casos anteriores. E possivel que esta forga maior provocada nesse ponto compense o
decréscimo de sustentagio ocasionado pela formagdo da esteira e faga com que a
curva de sustentagio nfo tenha uma queda t30 abrupta quanto nos outros dois casos
simulados. Uma outra evidéncia que favorece esta hipdtese é que o momento cresce
para valores de a altos, o que, lembrando da convengiio adotada, significa que o

momento na dire¢io anti-horaria esta diminuindo.
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Figura 6,32 — Valores de coeficiente de pressiio ao longo do perfil NACA 4421 a=20°.
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6.5 Resultados para perfil NACA 0006

Com o intuito de melhor compreender as razdes que levaram as divergéncias
observadas nos resultados obtidos, principalmente os referentes a altos angulos de
ataque dos perfis NACA 0012 e 2410, foram simulados mais trés perfis NACA, com
caracteristicas distintas dos anteriores, na tentativa de isolar caracteristicas dos perfis
que porventura estariam ocasionando estas discrepancias. O primeiro perfil estudado
¢ 0 NACA 0006, que é simétrico, porém apresenta espessura 50% menor do que o
outro folio simétrico simulado, 0 NACA 0012. Pretendeu-se aqui fazer um estudo
especifico sobre a influéncia da espessura no resultado gerado. Abaixo estdio os
resultados tabelados e na forma de gréficos, de maneira semelhante aos casos

anteriores:

Tabela 6.4 — Resultados para perfil NACA 0006.

INACA 0006
o (graus)! Cosim | C exp | Cysim | Cyexp
i -0612 | -0,730 ; 0,0095 [ 0,0000
i -0425 | -0,410 | 0,0039 | -0,0025
i -0,220 | -0,210 i 0,0026 | -0,0050
i 0,002 0,000 | -0,0004 | -0,0062
i 1
I |
I
I
1

0,218 0,230 : -0,0023 | -0,0062
0,425 0,430 : -0,0041 | -0,0056
0,609 0,620
0,737 0,780
0,862 0,820
0,636 0,760

'"-0,0088 | -0,0025
:_0,0621 | -0,0025

T
I
|
I
I

. 0,1122 | -0,0679
i -0,0795 | -0,1107

N S R IR LRSI T EN TS
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Figura 6.33 — Coeficiente de sustentagfio em fun¢io do ingulo de ataque para perfil NACA 0006,
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Figura 6.34 — Coeficiente de momento em funcio do Angulo de ataque para perfil NACA 0006,

Surpreendentemente, os resultados conseguidos com a simulacdo deste perfil

foram muito semelhantes aos resultados experimentais, tanto para a curva de

sustenta¢do quanto para a curva de momento. A expectativa, frente aos resultados
obtidos pelos perfis NACA 0012 e 2424, era que o resultado gerado por um perfil

delgado e sem cambagem fosse o0 que mais se afastasse dos resultados experimentais.

No entanto, a0 que parece, ndo se pode relacionar estes pardmetros de forma

independente e linear com a discrepancia frente aos resultados experimentais. A
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seguir estdo alguns resultados de campos de velocidade e pressdo para o folio NACA
0006:
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